Please wait a minute...
J Chin Soc Corr Pro  2012, Vol. 32 Issue (1): 54-58    DOI:
Current Issue | Archive | Adv Search |
INFLUENCE OF SULPHATE REDUCING BACTERIA ON CREVICE CORROSION BEHAVIOR OF Q235 STEEL
YANG Jiaxing1, ZHAO Ping1, SUN Cheng2, XU Jin2
1. School of Environmental & Chemical Engineering, Shenyang Ligong University, Shenyang 110159;
2. State Key Laboratory for Corrosion & Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Download:  PDF(979KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The crevice corrosion mechanism of Q235 carbon steel in soil leaching solution was studied, using a rectangle blind side device. The width of its aperture is 0.5 mm. The soil leaching solution was prepared in two groups for comparison: with SRB (sulphate reducing bacteria) and without SRB, both being investigated separately. The corrosion behavior of the steel was studied by electrochemical, microbiological and surface analysis methods. Electrochemical impedance spectroscopy (EIS) was measured. The results show that, the capacitive arc of the steel in bacteria containing solution is smaller than that in the aseptic solution at the same stage and the corrosion rate in bacteria containing solution is smaller than that in the aseptic solution. The results declare that SRB promotes the corrosion of the steel. At the same time, along with the aperture increasing, the capacitive arc increases at first, then decreases, and the corrosion rate of the bacteria containing solution is greater.
Key words:  Q235 steel      soil leaching solution      crevice corrosion      SRB      EIS     
Received:  21 September 2010     
ZTFLH: 

TG172

 
Corresponding Authors:  ZHAO Ping     E-mail:  pingzhao2000@126.com

Cite this article: 

YANG Jiaxing, ZHAO Ping, SUN Cheng, XU Jin. INFLUENCE OF SULPHATE REDUCING BACTERIA ON CREVICE CORROSION BEHAVIOR OF Q235 STEEL. J Chin Soc Corr Pro, 2012, 32(1): 54-58.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I1/54

[1] Cao C N. Corrosion Electrochemistry [M]. Beijing: Chemical Industry Press, 1985

    (曹楚南. 腐蚀电化学[M]. 北京:化学工业出版社, 1985)

[2] Gan F, Sun Z W, Sabde G, et al. Cathodic protection to mitigate external corrosion of underground steel pipe beneath disbanded coating[J]. Corrosion, 1994, 50(10): 804

[3] Li Z F, Gan F X,Mao X H.A study on cathodic protection against crevice corrosion in dilute NaCl solutions [J]. Corros.Sci., 2002, 44: 689-701

[4] Zhao L C, Sun C, Zhang F B, et al. Kinetics analysis of naphthenic acid corrosion in atmospheric and vacuum equipment [J].Corros. Sci. Prot. Technol., 2007, 19(1): 27-30

    (赵力成,孙成, 张付宝等. SRB对X70管线钢在污染土壤中腐蚀行为的影响[J].腐蚀科学与防护技术, 2007, 19(1): 27-30)

[5] Li Y X, Gong A J. Progress in studies on microbiologically influenced corrosion by sulfate-reducing bacteria[J].Total Corros.Control., 2005, 19(1): 30-33

    (李迎霞,弓爱君.硫酸盐还原菌微生物腐蚀研究进展[J]. 全面腐蚀控制, 2005, 19(1): 30-33)

[6] Liu J, Hou B L,Zheng J S, et al. Advances on corrosion caused by sulfate-reducing bacteria[J]. Mater. Prot., 2001, 34 (8):8-12

    (刘靖, 侯宝利, 郑家燊等. 硫酸盐还原菌腐蚀研究进展[J].材料保护, 2001, 34 (8): 8-12)

[7] Wei H B, Zhang L Q, Wu J J, et al. Study on the differentiation of SRB and evaluation of bactericide[J]. Ind. Water Treat., 2005, 25 (4): 46-48

    (魏红飚, 张利嫱, 吴建军等.硫酸盐还原菌的变异及其对杀菌剂敏感性的研究[J]. 工业水处理, 2005,25(4): 46-48)

[8] Xia S H, Qi M Y, Li J X, et al. Corrosion mechanism of MIC and influences on corrosion and protection of underground pipeline[J]. Total Corros.Control., 2005, 19(3): 27

    (夏双辉,戚明友, 李建秀等. 微生物腐蚀机理及对埋地管道腐蚀防护的影响[J].全面腐蚀控制. 2005, 19(3): 27)

[9] Jia S Y, Sun C, Wang J, et al. Research on corrosion of pipeline steel beneath disbanded coatings[J]. Corros. Sci. Prot.Technol., 2007,19(3): 211-214

    (贾思洋, 孙成, 王佳等.剥离涂层下管线钢腐蚀研究进展[J]. 腐蚀科学与防护技术, 2007, 19(3):211-214)

[10] Xu J, Wang K X, Sun C, et al. The effects of sulfate reducing bacteria on corrosion of carbon steel Q235 under simulated disbonded coating by using electrochemical impedance spectroscopy[J]. Corros. Sci., 2011, 53(4): 1554-1562

[11] Shi Y Y. The Electrochemical Studies of Atmospheric Corrosion of Typical Metals[D]. Hangzhou: Zhejiang University, 2008.

     (施彦彦. 典型金属材料大气腐蚀的电化学研究[D]. 杭州: 浙江大学,2008)

[12] Zhou S F, Yin X F, Zhou W G, et al. Effects of SRB on corrosion of Q235 steel in Cl- corrosion soils [J]. Corros.Sci. Prot. Technol., 2004, 16(4): 199-202

     (周书峰, 尹秀峰,周卫国等. 在不同Cl含量土壤中硫酸盐还原菌对Q235钢腐蚀的影响[J].腐蚀科学与防护技术, 2004, 16(4): 199-202)
[1] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[4] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[5] ZHAO Baijie, FAN Yi, LI Zhenzhen, ZHANG Bowei, CHENG Xuequn. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[6] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[7] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[8] Changgang WANG,Jie WEI,Xin WEI,Xin MU,Fang XUE,Junhua DONG,Wei KE,Guoping LI. Crevice Corrosion Behavior of Several Super Stainless Steels in a Simulated Corrosive Environment of Flue Gas Desulfurization Process[J]. 中国腐蚀与防护学报, 2019, 39(1): 43-50.
[9] Xiaofei CUI, Xiaoming TAN, De WANG, Ang QIAN. Assessment of Aging Performance of Polyurethane Coating for 7B04 Al-alloy with an Accelerated Testing Spectrum[J]. 中国腐蚀与防护学报, 2018, 38(1): 74-80.
[10] Fang GUAN, Xiaofan ZHAI, Jizhou DUAN, Baorong HOU. Progress on Influence of Cathodic Polarization on Sulfate-reducing Bacteria Induced Corrosion[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.
[11] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[12] Jia WANG, Mengyang JIA, Zhaohui YANG, Bing HAN. On Completeness of EIS Equivalent Circuit Analysis for Electrochemical Corrosion Process[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
[13] Guangyi CAI,Haowei WANG,Weihang ZHAO,Zehua DONG. Effect of Nano-CeO2 on Anticorrosion Performance for Polyurethane Coating[J]. 中国腐蚀与防护学报, 2017, 37(5): 411-420.
[14] Xinxin ZHANG,Zhiming GAO,Wenbin HU,Zhipeng WU,Lianheng HAN,Lihua LU,Yan XIU,Dahai XIA. Correlation Between Corrosion Behavior and Image Information of Q235 Steel Beneath Thin Electrolyte Film[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
[15] Juan ZHANG,Ziqiang LIU,Tao FENG,Shifeng WEN,Ruiqing CHEN. Effect of Carbon Nanotube on Properties of Epoxy Coating[J]. 中国腐蚀与防护学报, 2017, 37(3): 254-260.
No Suggested Reading articles found!