Please wait a minute...
J Chin Soc Corr Pro  2010, Vol. 30 Issue (3): 241-245    DOI:
Research Articles Current Issue | Archive | Adv Search |
ELECTROCHEMICAL CHARACTERIZATION OF PASSIVE FILM FORMED UNDER DIFFERENT POTENTIAL CONDITION ON X70 PIPELINE STEEL IN NaHCO3 SOLUTION
JIA Zhijun, LI Xiaogang, LIANG Ping, WANG Liwei
Advanced Material & Technology Institute, University of Science and Technology Beijing, Beijing 100083
Download:  PDF(529KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The passive behavior and electrochemical characterization of passive film formed under different potential on X70 pipeline steel in NaHCO3 solution were discussed by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and capacitance measurements. It is shown that the X70 pipeline steel has a wide passive anodic region between -50 mV to 900 mV. EIS result indicates that the passive film is much denser and uniform with the increasing potential. Mott-Schottky analysis presents that the passive films on X70 pipeline steel in 0.5 mol?L-1 NaHCO3 solution exhibits n-type semiconductive character in potential region of -0.2 V to 0.8 V. The donor density of the passive film decreases and the thickness of the space-charge layers increases with the increasing potential. The corrosion resistance of the passive film increases with the forming potential.

Key words:  X70 pipeline steel      passive film      EIS      Mott-Schottky plot      corrosion resistance     
Received:  16 February 2009     
ZTFLH: 

TG172

 
Corresponding Authors:  LI Xiaogang     E-mail:  lixiaogang99@263.net

Cite this article: 

JIA Zhijun, LI Xiaogang, LIANG Ping, WANG Liwei. ELECTROCHEMICAL CHARACTERIZATION OF PASSIVE FILM FORMED UNDER DIFFERENT POTENTIAL CONDITION ON X70 PIPELINE STEEL IN NaHCO3 SOLUTION. J Chin Soc Corr Pro, 2010, 30(3): 241-245.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2010/V30/I3/241

[1] Li D G, Zhu J W, Zheng M S, et al.Photo-electrochemical characterization of passive film formed on X80 pipeline steel [J]. Acta Metall. Sin., 2008, 44(6): 739-744
[2] (李党国,朱杰武,郑茂盛等,X80管线钢钝化膜的光电化学性能 [J]. 金属学报, 2008,44(6):739-744)
[3] Liang P, Li X G, Du C W, et al. Influence of chloride ions on the corrosion resistance of X80 pipeline steel in NaHCO3 solution [J]. J. Univ. Sci. Technol.Beijing, 2008, 30(7): 735-739
[4] (梁平,李晓刚,杜翠微等,Cl-对X80管线钢在NaHCO3溶液中腐蚀性为的影响 [J]. 北京科技大学学报,2008,30(7):735-739)
[5] Li D G, Feng Y R, Bai Z Q, et al. Calculation of diffusivity of point defects in passive film formed on X80 pipeline steel [J]. Chin.J Appl. Chem., 2008, 25(9): 1007-1010
[6] (李党国,冯耀荣,白真权等,X80管线钢钝化膜内点缺陷扩散系数的计算 [J].应用化学,2008, 25(9):1007-1010)
[7] Cheng Y F, Luo J L. A comparison of the pitting susceptibility and semiconducting properties of the passive films on carbon steel in chromate and bicarbonate solutions [J]. Appl. Surf. Sci, 2000, 167(1-2):113-121
[8] Cheng Y F, Luo J L. Electronic structure and pitting susceptibility of passive film on carbon steel [J]. Electrochim. Acta, 44(17): 2947-2957
[9] Glass G K, Hassanein A M, Buenfeld N R. Obtaining impedance information on the steel-concrete interface [J]. Corrosion, 1998, 54(11):887-897
[10] Cheng Y F, Luo J L. Passivity and pitting of carbon steel in chromate solutions [J]. Electrochim. Acta, 1999, 44(26):4795-2804
[11] Arutunow A, Darowicki K. DEIS assessment of AISI 304 stainless steel dissolution process in conditions of intergranular corrosion [J]. Electrochim. Acta, 2008, 53(13):4387-4395
[12] Krakowiak S, Darowicki K, Slepski P. Impedance investigation of passive 304 stainless steel in the pit pre-initiation state [J]. Electrochim. Acta, 2005, 50(13):2699-2704
[13] Alves V A, Brett C M A. Characterisation of passive films formed on mild steels in bicarbonate solution by EIS [J]. Electrochim. Acta, 2002, 47(13-14):2081-2091
[14] Sikora J, Sikora E, MacDonald D D. The electronic structure of the passive film on tungsten [J]. Electrochim. Acta, 2000, 45(12):1875-1883
[15] Rangel C M, Silva T M, Da Cunha Belo M. Semiconductor electrochemistry approach to passivity and stress corrosion cracking susceptibility of stainless steels [J]. Electrochim. Acta, 2005, 50(25-26):5076-5082
[16] Zeng Y M, Luo J L, Norton P R. A study of semiconducting properties of hydrogen containing passive films [J]. Thin Solid Films, 2004, 460(1-2):116-124
[17] Ningshen S, Kamachi Mudali U, Mittal V K, et al. Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels [J]. Corros. Sci, 2007, 49(1):481-496
[18] Hamadou L, Kadri A, Benbrahim N. Characterization of passive films formed on low carbon steel in borate buffer solution (pH 92) by electrochemical impedance spectroscopy [J]. Appl. Surf. Sci, 2005, 252(5):1510-1519
[19] Rangel C M, Silva T M, Da Cunha Belo M. Semiconductor electrochemistry approach to passivity and stress corrosion cracking susceptibility of stainless steels [J]. Electrochim. Acta, 2005, 50 (25-26):5076-5082
[20] Zeng Y M, Luo J L, Norton P R. A study of semiconducting properties of hydrogen containing passive films [J]. Thin Solid Films, 2004, 460(1-2):116-124
[21] Ningshen S, Kamachi M U, Mittal V K, et al. Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels [J]. Corros. Sci, 2007, 49(1):481-496
[22] Gercasi C A, Folquer M E, Vallejo A E, et al. Electron transfer across anodic films formed on tin in carbonate-bicarbonate buffer solution [J]. Electrochim.Acta, 2005, 50(5):1113-1119
[23] Zeng Y M, Luo J L. Electronic band structure of passive film on X70 pipeline steel [J]. Electrochim.Acta, 2003, 48(23):3551-3562
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[5] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[6] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[7] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[8] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[9] CHEN Xu, LI Shuaibing, ZHENG Zhongshuo, XIAO Jibo, MING Nanxi, HE Chuan. Microbial Corrosion Behavior of X70 Pipeline Steel in an Artificial Solution for Simulation of Soil Corrosivityat Daqing Area[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[10] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[11] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[12] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[13] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[14] ZHANG Rui,LI Yu,GUAN Lei,WANG Guan,WANG Fuyu. Effect of Heat Treatment on Electrochemical Corrosion Behavior of Selective Laser Melted Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[15] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
No Suggested Reading articles found!