Please wait a minute...
J Chin Soc Corr Pro  2004, Vol. 24 Issue (6): 372-375     DOI:
Research Report Current Issue | Archive | Adv Search |
Effect of Electric Pulse on the Deformation Martensite and Corrosion Resistance of Stainless Steels
Zhilin Li
北京化工大学材料学院
Download:  PDF(143KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The deformation induced martensite in metastable austenite stainless steels effects their physical and chemical properties. Worn metastable austenite stainless steel was treated with electric pulse of anode 60s-280s + cathode 30s-280s for 9h. XRD analyge, microhardness test, corrosion potential test and metallographic observation were used to analyze the amount of martensite , surface hardness and corrosion resistance before and after the treatment. The results show that the amount of martensite always decreases after the treatment. According to the various pulse width, the treatment can induce electrochemical annealing, it can also cause the priority corrosion of martensite. When electrochemically induced annealing happens, the treatment can not only keep the high hardness after the amount of martensite decreases, but also promote the corroson resistance of the stainless steel in Cl- containing solution.
Key words:  electrochemically induced annealing      stainless steel      deformation martensite      corrosion resistance      
Received:  04 June 2003     
ZTFLH:  TG171  
Corresponding Authors:  Zhilin Li   

Cite this article: 

Zhilin Li. Effect of Electric Pulse on the Deformation Martensite and Corrosion Resistance of Stainless Steels. J Chin Soc Corr Pro, 2004, 24(6): 372-375 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2004/V24/I6/372

[1]CigadaA ,MazzaB ,PedeferriP ,etal.Stresscorrosioncrackingofcold-workingaustenitestainlesssteels[J].Corros.Sci.,1982,22(6):558-578
[2]KamideHidehiko.Effectofcarboncontentondissolutionrateofαprimemartensiteand304stainlesssteelinaH2SO(1):47-52[J].J .JapanInstituteofMetals,1994,58(12):414-419
[3]FangZ ,WuYS .Effectofdeformationinducedmartensitetransfor mationontheelectrochemicalbehaviorof304stainlesssteelunderactivestate[J].Corros.Sci.Prot.Technol.,1997,9(1):75-78(方智,吴荫顺.形变诱发马氏体相变对304不锈钢在活化状态下的电化学行为的影响[J].腐蚀科学与防护技术,1997,9(1):75-78)
[4]XuCC ,HKe,WuYX ,etal.Transformationruleofdeformationinducedmartensiteanditsinfluenceonthepittingsensibilityof1Cr18Ni9Tistainlesssteel[J].J.Chin.Soc.Corros.Prot.,1996,16(1):47-52(许淳淳,何珂,吴永火斤等.1Cr18Ni9Ti不锈钢形变诱发马氏体相变规律及其对孔蚀敏感性的影响[J].中国腐蚀与防护学报,1996,16(1):47-52)
[5]HuG ,XuCC ,ZhangXS ,etal.Influenceofcoldworkingonpittingsensibilityof304stainlesssteel[J].J.Chin.Soc.Corros.Prot.,2002,22(4):198-201(胡钢,许淳淳,张新生等.冷加工对304不锈钢孔蚀敏感性的影响[J].中国腐蚀与防护学报,2002,22(4):198-201)
[6]ShaoGJ,WangYL ,WangAR ,etal.Correlationbetweenthepit tingsensibilityandferromagnetic phasecontentofmetastableaustenitesteel[J].IronandSteel,1996,31(4):48-52(邵光杰,王玉林,王爱荣等.亚稳态奥氏体不锈钢孔蚀敏感性与铁磁相含量相关性[J].钢铁,1996,31(4):48-52)
[7]XuRF ,XuCC ,XueHY ,etal.Researchonthecorrelationbe tweenthemartensitecontentandpittingsensibilityof1Cr18Ni9Tistainlesssteel[J].Corros.Sci.Prot.Technol..1998,10(4):197-201(徐瑞芬,许淳淳,薛慧勇等.1Cr18Ni9Ti不锈钢的马氏体相变量与孔蚀敏感性的相关性研究[J].腐蚀科学与防护技术,1998,10(4):197-201)
[8]XuCC ,XuRF ,OuyangWZ ,etal.Researchonthepittingsensi bilityof1Cr18Ni9TistainlesssteelafterdeformationinducedmartensitetransformationinacidsolutionwithACresistancemethod[J].Corros.Sci.Prot.Technol,1997,9(2):95-102(许淳淳,徐瑞芬,欧阳维真等.用交流阻抗法研究形变诱发马氏体相变的1Cr18Ni9Ti不锈钢在酸性NaCl溶液中的孔蚀敏感性[J].腐蚀科学与防护技术,1997,9(2):95-102)
[9]XuRF ,XuCC ,OuyangWZ ,etal.Effectofmartensitetransfor mationoncorrosionresistanceofaustenitestainlesssteel[J].J.Bei jingUniv.Chem.Technol.,1998,25(2):57-63(徐瑞芬,许淳淳,欧阳维真等.奥氏体不锈钢的马氏体相变对耐蚀性的影响[J].北京化工大学学报.1998,25(2):57-63)
[10]XuCC ,OuyangWZ ,JiangBW ,etal.Effectofdeformationin ducedmartensiteontheSCCof1Cr18Ni9Tistainlesssteel[J].Corros.Sci.Prot.Technol.,1996,8(4):267-270(许淳淳,欧阳维真,姜宝文等.形变诱发马氏体对1Cr18Ni9Ti不锈钢应力腐蚀破裂的影响[J].腐蚀科学与防护技术,1996,8(4):267-270)
[11]XuCC ,OuyangWZ ,XuRF ,etal.CorrelationbetweentheSCCsensibilityandferromagneticphasecontentof1Cr18Ni9Tistain lesssteelinchloridesolution[J].J.Chin.Soc.Corros.Prot.,1997,17(1):73-76(许淳淳,欧阳维真,徐瑞芬等.1Cr18Ni9Ti不锈钢在氯化物溶液中SCC敏感性与铁磁相含量的相关性[J].中国腐蚀与防护学报,1997,17(1):73-76)
[12]DiSchinoA ,SalvatoriI ,KennyJM .Effectsofmartensiteforma tionandaustenitereversionongrainrefiningofAISI 304stainlesssteel[J].J.Mater.Sci.,2002,37:4561-4565
[13]ZhangY ,JingXT ,LouBZ ,etal.Mechanismandreversiblebe havioroftheα′→γtransformationin1Cr18Ni9Tistainlesssteel[J].J.Mater.Sci.,1999,34:3291-3296
[14]BursteinGT ,HutchingsIM ,SasakiK .Electrochemicallyinducedannealingofstainless-steelsurfaces[J].Nature,2000,407:885~887
[15]NaritaN ,AlltstterCJ ,BirnbaumHK .Hydrogen-relatedphasetransformationsinausteniticstainlesssteels[J].Metall.Trans.A ,1982,13A ,1355~1365
[16]BentleyAP ,SmithGC .Phasetransformationofausteniticstain lesssteelsasaresultofcathodichydrogencharging[J].Metall.Trans.A ,1986,17A :1593~1600
[17]OkadaH ,HosoiY ,AbeS .Formationofcracksinausteniticstain lesssteelscathodicallychargedwithhydrogen[J].Corrosion,1970,26:183-186
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[3] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[4] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[5] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[6] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[7] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[8] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[9] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[10] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[11] ZHAO Baijie, FAN Yi, LI Zhenzhen, ZHANG Bowei, CHENG Xuequn. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[12] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[13] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[14] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[15] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
No Suggested Reading articles found!