Please wait a minute...
J Chin Soc Corr Pro  2004, Vol. 24 Issue (1): 25-28     DOI:
Research Report Current Issue | Archive | Adv Search |
Predicting SCC Behavior of Austenitic Stainless Steels in High Temperature Water by Artificial Neural Network
Hao Guo;Zhanpeng Lv;Guoqiang Feng;Xun Cai;Wu Yang
Download:  PDF(173KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Two kinds of empirical learning methods based on artificial neural network(ANN),i.e., double layer perceptron(DLP) model and Elman feedback(EF) model,have been used to analyze SCC data and predict the SCC susceptibitlity of austenitic stainless steels in high temperature water(HTW). The results indicated that DLP model could not converge after long training epochs while EF model could reach a steady value within limited training epochs for the SCC data of stainless steels(SS).The SCC susceptibility fo 304SS and 316SS in HTW depends on the parameters such as temperature(T), dissolved O2 content(DO), chloride ion content ([Cl-]) and electrode potential(E). The threshold value(ThV) for SCC used in the EF model affected the prediction ratios. For THV<=0.6, the ranges of prediction ratio were ca.0.66-0.90for method Ⅰ(including the data to be predicted) and 0.60~0.79 for method Ⅱ(excluding the data to be predicted) for 304SS, ca.0.81~0.98 for method Ⅰ and 0.78~0.90 for method Ⅱ for 316SS. The curves of mean value of prediction ratios show that the prediction ratios have the characteristics of normal distribution and the best ThV is 0.5. The EF model is a very useful tool for qualitatively predicting the SCC behaviour of austenitic stainless steels in HTW.
Key words:  stress corrosion cracking      artificial neural network      304SS steel      316SS steel      high temperature water      e     
Received:  08 July 2003     
ZTFLH:  TG172.9/TP183  

Cite this article: 

Hao Guo; Zhanpeng Lv; Guoqiang Feng; Xun Cai; Wu Yang. Predicting SCC Behavior of Austenitic Stainless Steels in High Temperature Water by Artificial Neural Network. J Chin Soc Corr Pro, 2004, 24(1): 25-28 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2004/V24/I1/25

[1]ZhangLM .ModelsandApplicationsofArtificialNeuralNetworks[M].Shanghai:FudanUniversityPress,1993(张立明,人工神经网络的模型及其应用[M].上海:复旦大学出版社,1993)
[2]LouST ,ShiY .SystemAnalysisandDesignBasedonMETLAB -neuralNetworks[M].Xi′an:Xi′anElectronicsScienceandTechnologyUniver sityPress,1998(楼顺天,施阳.基于MATLAB的系统分析与设计———神经网络[M].西安:西安电子科学技术大学出版社,1998)
[3]YangW ,ZhangM ,ZhaoG ,CongletonJ .AcomparisonofU -bendandslowstrainrateprocedureforassessingtheSCCresistanceoftype304stainlesssteelinhigh-temperaturewater[J].Corrosion,1991,47(4):226-233
[4]GordonBarryM .Theeffectofchlorideandoxygenonthestresscorrosioncrackingofstainlesssteels:reviewofliterature[J].MaterialsPerfor mance,1980,19(4):29-37
[5]SturrockCP ,BogaertsWF .Empiricallearninginvestigationsofthestresscorrosioncrackingofausteniticstainlesssteelsinhigh-tempera tureaqueousenvironments[J].Corrosion,1997,53(4):333-343
[6]ClarkeWL ,GordonGM .Investigationofstresscorrosioncrackingsus ceptibilityofFe-Ni-Cralloysinnuclearreactorwaterenvironments[J].Corrosion,1973,29(1):1-12
[7]HishidaMamoru,NakadaHiroshi.Constantstrainratetestingoftype304stainlesssteelinhightemperaturewater-partⅡ:aninvestigationofthechlorideeffectonstresscorrosioncracking[J].Corrosion,1977,33(11):403-407
[8]YangWu,ZhaoGuozhen,ZhangMeijie,CongletonJohn.AnAESinves tigationofthesurfacefilmsformedonstresscorrosiontestspecimensoftype304stainlesssteelinhightemperaturewater[J].Corros.Sci.,1992,33(1):89-102
[9]CongletonJ,BerrisfordRA ,YangW .Stresscorrosioncrackingofsensi tizedtype304stainlesssteelindopedhigh-temperaturewater[J].Cor rosion,1995,51(12):901-910
[10]NuemannPD ,GriessJC .Stresscorrosioncrackingoftype347stainlesssteelandotheralloysinhightemperaturewater[J].Corrosion,1963,19:345t-353t
[11]CongletonJ,YangW .Theeffectofappliedpotentialonthestresscorro sioncrackingofsensitizedtype316stainlesssteelinhightemperaturewater[J].Corros.Sci.,1995,37(3):429-444
[12]AndrensenPL .Environmentallyassistedgrowthrateresponseofnon sensitizedAISI316gradestainlesssteelsinhightemperaturewater[J].Corrosion,1988,44(7):450-460
[13]YangW ,CongletonJ,Kohneh-ChariO ,SajdlP .Thestrainforstresscorrosioncrackinitiationintype316stainlesssteelinhightemperaturewater[J].Corros.Sci.,1992,33(5):735-750
[14]YangW ,ZhuXY ,LiLX ,HuaHZ ,YangHG .Stresscorrosioncrack ingofsensitizedtype316stainlesssteelinhightemperaturewater[J].J.Chin.Soc.Corros.Prot.,1993,13(2):126-136(杨武,朱锡英,李丽霞,华慧中,杨鸿根.敏化316不锈钢在高温水中的应力腐蚀破裂[J].中国腐蚀与防护学报,1993,13(2):126-136)
[15]CongletonJ,ShihHC ,ShojiT ,ParkinsRN .Thestresscorrosioncrack ingoftype316stainlesssteelinoxygenatedandchlorinatedhightem peraturewater[J].Corros.Sci.,1985,25(8/9):769-788
[16]CongletonJ,ZhengW ,HuaH .Stresscorrosioncrackingofannealedtype316stainlesssteelinhightemperaturewater[J].Corrosion,1990,46(8):621-627
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DAI Ting, GU Yanhong, GAO Hui, LIU Kailong, XIE Xiaohui, JIAO Xiangdong. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[3] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[4] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[5] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[6] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[7] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[8] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[9] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[10] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[11] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[12] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[13] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[14] LIU Yang, WU Jinyi, YAN Xiaoyu, CHAI Ke. Effect of Bacillus flexus on Degradation of Polyurethane Varnish Coating in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[15] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
No Suggested Reading articles found!