Please wait a minute...
J Chin Soc Corr Pro  1998, Vol. 18 Issue (3): 187-192    DOI:
Current Issue | Archive | Adv Search |
INVESTIGATION ON WATER COOLING METHOD FOR IMPROVING STRESS CORROSION RESISTANCE OF WELDED PIPES
LIU Ming WANG Yong LIU Guang-rui(Tianjing University; Tianjing 300072)TANG Mu-yao MENG Fan-sen(Xi'an Jiaotong University)
Download:  PDF(1044KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Thermo-elastic-plastic finite element method was employed to investigate the welding stress distribution in the multipass-girth-butt welded pipes of austenitic stainless steel (1Cr18Ni9Ti) and mild steel(0.2%C). The computed results showed that significant biaxial tensile residual stresses existed in the weld vicinity region of the inner surface of the pipes under the normal process condition. Water cooling could effectively adjust the residual stress distribution and obtain the biaxial compression residual stresses on the whole HAZ of the pipe inner surface. The residual stress measurements verified the conclusion. The compression residual stresses of the multipass-girth-butt welded 1Cr18Ni9Ti pipe could remarkably improve its resistance to stress corrosion cracking.
Key words:  Pipe      Welded joint      Water cooling method      Stress corrosion      Residual stress distribution     
Received:  25 June 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

LIU Ming WANG Yong LIU Guang-rui(Tianjing University; Tianjing 300072)TANG Mu-yao MENG Fan-sen(Xi'an Jiaotong University). INVESTIGATION ON WATER COOLING METHOD FOR IMPROVING STRESS CORROSION RESISTANCE OF WELDED PIPES. J Chin Soc Corr Pro, 1998, 18(3): 187-192.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y1998/V18/I3/187

1 Bailey D J, Danko J C. The Third Intermational Symposium of the Japan Welding Society, 1978. 227
2 Brust F W, Rybicki E F. ASME Journal of Pressure Vessel Technology, 1981, 103:226
3 Rybicki E F, McGuire P A. ASME Journal of Pressure Vessel Technology, 1981, 103:294
4 竹内洋一朗著,郭廷玮,李安定译.热应力,北京:科学技术出版社,1997
5 董俊明.低碳钢焊接接头应力腐蚀破裂行为的研究,西安交通大学硕土论文,1984
[1] DAI Ting, GU Yanhong, GAO Hui, LIU Kailong, XIE Xiaohui, JIAO Xiangdong. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[3] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] JIA Shichao, GAO Jiaqi, GUO Hao, WANG Chao, CHEN Yangyang, LI Qi, TIAN Yimei. Influence of Water Quality on Corrosion of Cast Iron Pipe in Reclaimed Water[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[5] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[6] AI Fangfang, CHEN Yiqing, ZHONG Bin, LI Lin, GAO Peng, SHAN Hongyu, SU Xiandong. Stress Corrosion Cracking Behavior of T95 Oil Well Pipe Steel in Sour Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[7] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[8] LI Qing, ZHANG Deping, LI Xiaorong, WANG Wei, SUN Baozhuang, AI Chi. Comparison of Stress Corrosion Behavior of TP110TS and P110 Steel in a Simulated Annular Environment of CO2 Injection Well[J]. 中国腐蚀与防护学报, 2020, 40(4): 302-308.
[9] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[10] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[11] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[12] CHEN Xu, LI Shuaibing, ZHENG Zhongshuo, XIAO Jibo, MING Nanxi, HE Chuan. Microbial Corrosion Behavior of X70 Pipeline Steel in an Artificial Solution for Simulation of Soil Corrosivityat Daqing Area[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[13] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[14] HUANG Chen,HUANG Feng,ZHANG Yu,LIU Haixia,LIU Jing. Galvanic Corrosion Behavior for Weld Joint of High Strength Weathering Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 527-535.
[15] YUAN Wei,HUANG Feng,GAN Lijun,GE Fangyu,LIU Jing. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
No Suggested Reading articles found!