Please wait a minute...
J Chin Soc Corr Pro  1998, Vol. 18 Issue (3): 178-186    DOI:
Current Issue | Archive | Adv Search |
CORROSION FATIGUE CRACK INITIATION LIFE OF AN ALUMINUM ALLOY UNDER VARIABLE AMPLITUDE LOADING
WANG Rong (Xi'an Petroleum Institute; Xi'an 710065)ZHENG Xiu-lin (Northwestern Polytechnical University; Xi'an 710072)
Download:  PDF(1204KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Corrosion fatigue crack initiation(CFCI) life of LY12CZ aluminum alloy notched specimens in 3.5% NaCl solution under variable amplitude loading block spectra was investigated experimentally. It was shown that overloading in the spectrum made the CFCI life longer considerably, and the loading sequence and the overloading type had a significant effect. So the overloading effect must be considered in the prediction of the CFCI life under variable amplitude loading. According to the CFCI life curves that revealed the overloading and corrosion effect, a study was made on applying Miner's accumulative damage rule to predict CFCI life under variable amplitude loading. A model was established and was thereafter used to predict the CFCI life under the selected spectra. The predicting results showed good agreement with the testing. The distribution of the CFCI life under one spectrum was determined by using ranking methods. Corrosion effect on CFCI under variable amplitude loading was also discussed.
Key words:  Corrosion fatigue      Crack initiation      Variable amplitude loading      Miner's rule      Corrosion effect     
Received:  25 June 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

WANG Rong (Xi'an Petroleum Institute; Xi'an 710065)ZHENG Xiu-lin (Northwestern Polytechnical University; Xi'an 710072). CORROSION FATIGUE CRACK INITIATION LIFE OF AN ALUMINUM ALLOY UNDER VARIABLE AMPLITUDE LOADING. J Chin Soc Corr Pro, 1998, 18(3): 178-186.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y1998/V18/I3/178

1 王荣.铝合金腐蚀疲劳定量规律的研究.西北工业大学博士学位论文,1994.6
2 Hagn L. Mats Sci and Eng, 1988; A103(1):193
3 Akid R. Fract. Mater. Struct. 1996, 19(2/3): 277
4 路民旭,刘晓坤,王建军,郑修鳞.航空学报,1988,9(13):S91
5 王荣,郑修麟,刘文宾.固体力学学报,1995,16(S.Issue):66
6 王荣,郑修麟.中国腐蚀与防护学报,1996,16(4):256
7 Zheng X.-L.Int J.Fatigue,1993,15(6):461
8 郑修麟著.金属疲劳的定量理论.西北工业大学出版社,1994.193
9 Zheng Xiulin. Int. J. Fatigue, 1986, 8(1):17
10 Hirose Y, Mura T. Eng. Fract. Mech., 1985, 22(5): 859
11 蒋祖国主编.飞机结构腐蚀疲劳,北京:航空工业出版社,1992.p.159
[1] Haisheng TONG,Yanhui SUN,Yanjing SU,Xiaolu PANG,Kewei GAO. Investigation on Hydrogen-induced Cracking Behavior of 2205 Duplex Stainless Steel Used for Marine Structure[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[2] Jiapeng LIAO,Xinqiang WU. Review of Notch Effect on Fatigue Behavior of Materials for LWR Plants in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 511-516.
[3] Xiaoqiang LIU,Xuelian XU,Jibo TAN,Yuan WANG,Xinqiang WU,Yuli ZHENG,Fanjiang MENG,En-Hou HAN. Effect of Reactor Coolant Environment on Fatigue Performance of Alloy 690 Steam Generator Tubes[J]. 中国腐蚀与防护学报, 2015, 35(3): 213-219.
[4] LIANG Rui,ZHANG Xinyan,LI Shuxin,JIANG Feng,CHEN Shuaifu. Effect of Semi-elliptical Pit on Stress Concentration of Round Bar[J]. 中国腐蚀与防护学报, 2013, 33(6): 532-536.
[5] TAN Jibo, WU Xinqiang, HAN En-Hou. REVIEW ON RELATIONSHIP BETWEEN DYNAMIC STRAIN AGING AND ENVIRONMENTALLY ASSISTED CRACKING OF STRUCTURAL MATERIALS USED IN NUCLEAR POWER PLANTS[J]. 中国腐蚀与防护学报, 2012, 32(6): 437-442.
[6] TANG Zhanmei, HU Shilin, ZHANG Pingzhu. STRESS CORROSION CRACKING OF 316Ti IN 300℃ HIGH TEMPERATURE WATER CONTAINING CHLORIDE IONS[J]. 中国腐蚀与防护学报, 2012, 32(4): 291-295.
[7] ZHOU Huamao WANG Jianqiu ZHANG Bo HAN Enhou ZANG Qishan. FATIGUE BEHAVIOR OF ROLLED AZ31B MAGNESIUM ALLOY IN AIR AND NaCl SOLUTION[J]. 中国腐蚀与防护学报, 2009, 29(2): 132-136.
[8] ZHOU Huamao WANG Jianqiu ZHANG Bo HAN Enhou ZANG Qishan. ACOUSTIC EMISSION SIGNAL ANALYSIS FOR ROLLED AZ31B MAGNESIUM ALLOY DURING CORROSION FATIGUE PROCESS[J]. 中国腐蚀与防护学报, 2009, 29(2): 81-87.
[9] . THE EFFECT OF MECHANICAL FACTORS ON SCC INITIATION OF PIPELINE STEEL[J]. 中国腐蚀与防护学报, 2008, 28(5): 282-286 .
[10] . CORROSION FATIGUE BEHAVIOR OF 304 STAINLESS STEEL MICRO-SIZED SPECIMENS[J]. 中国腐蚀与防护学报, 2008, 28(2): 99-103 .
[11] ;. INFLUENCE OF COATING OF COVERING AIRPLANE ON CORROSION FATIGUE LIFE OF ALUMINIUM ALLOY LY12CZ[J]. 中国腐蚀与防护学报, 2006, 26(1): 34-36 .
[12] . Mechanisms for corrosion fatigue crack propagation[J]. 中国腐蚀与防护学报, 2004, 24(6): 321-333 .
[13] Suzhen Luo; Hemin Jing; Yugui Zheng. CAVITATION EROSION BEHAVIOR OF 20SiMnLOW ALLOY STEEL IN DISTILLED WATERAND 3% SODIUM CHLORIDE SOLUTION[J]. 中国腐蚀与防护学报, 2003, 23(4): 206-210 .
[14] WANG Rong(Xi'an Petroleum Institute; Xi'an 710061). A FRACTURE MODEL FOR CORROSION FATIGUE CRACK PROPAGATION PROCESS[J]. 中国腐蚀与防护学报, 1998, 18(2): 87-94.
[15] FU Chaoyang ZHENG Jiashen (Huazhong University of Science and Technology; Wuhan 430074). HYDROGEN PERMEATION AND CORROSION FATIGUE BEHAVIOR OF CARBON STEEL IN DRILLING FLUIDS[J]. 中国腐蚀与防护学报, 1997, 17(4): 263-268.
No Suggested Reading articles found!