Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2026, Vol. 46 Issue (1): 145-154    DOI: 10.11902/1005.4537.2025.103
Current Issue | Archive | Adv Search |
Influence of Construction Angle and Supporter on Corrosion Behavior of AlSi10Mg Alloy Prepared by Laser Additive Manufacturing
JI Lei1, ZHANG Zhen1(), WANG Liqing1, LI Yunlong1, MA Kai1, ZHAO Zhanyong1, BAI Peikang1,2
1.School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
2.Taiyuan University of Science and Technology, Taiyuan 030024, China
Cite this article: 

JI Lei, ZHANG Zhen, WANG Liqing, LI Yunlong, MA Kai, ZHAO Zhanyong, BAI Peikang. Influence of Construction Angle and Supporter on Corrosion Behavior of AlSi10Mg Alloy Prepared by Laser Additive Manufacturing. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 145-154.

Download:  HTML  PDF(24840KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Four different bulk AlSi10Mg alloys were fabricated by laser additive manufacturing with powder bed fusion, while their growth along either vertical, angle horizontal, or 45-degree inclined orientation, as well as on a proper supporter. The corrosion behavior of the four bulk alloys in 3.5%NaCl solution was assessed by means of electrochemical techniques. The results showed that the alloys exhibited a combination of columnar and equiaxed grains with different size and distribution. The growth orientations and supporter have effect on the porosity and residual stress of the alloys, and the vertical growth alloy had the highest porosity and residual stress. Electrochemical results showed that the alloy grown along 45-degree inclined orientation had the best corrosion resistance and the highest pitting potential and polarization resistance. The effect of microstructure on corrosion resistance of the LPBF-AlSi10Mg alloys was discussed.

Key words:  laser powder bed fusion      AlSi10Mg alloy      construction angle      supporting      electrochemical corrosion     
Received:  28 March 2025      32134.14.1005.4537.2025.103
ZTFLH:  TG17  
Fund: National Natural Science Foundation of China(52105409);Special Fund for Science and Technology Innovation Teams of Shanxi Province

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.103     OR     https://www.jcscp.org/EN/Y2026/V46/I1/145

Fig.1  Macroscopic schematics of four additive manufacturing AlSi10Mg alloy samples: (a) Vertical 90°, (b) Braced 45°, (c) Unbraced 45°, (d) Horizontal 0°
Fig.2  Metallographic structures of four AlSi10Mg alloy samples after etching: (a) Vertical 90°, (b) Braced 45°, (c) Unbraced 45°, (d) Horizontal 0°
Fig.3  SEM morphologies of four AlSi10Mg alloy samples after etching: (a) Vertical 90°, (b) Braced 45°, (c) Unbraced 45°, (d) Horizontal 0°
Fig.4  EBSD Inverse pole figure maps of four AlSi10Mg alloy samples: (a) Vertical 90°, (b) Braced 45°, (c) Unbraced 45°, (d) Horizontal 0°
Fig.5  Polar plots of four AlSi10Mg alloy samples: (a) Vertical 90°, (b) Braced 45°, (c) Unbraced 45°, (d) Horizontal 0°
Fig.6  Differential maps and distribution histograms of grain boundary orientations of four AlSi10Mg alloy samples: (a) Vertical 90°, (b) Braced 45°, (c) Unbraced 45°, (d) Horizontal 0°
Fig.7  Residual stresses of four AlSi10Mg alloy samples
Fig.8  Polarization curves (a) and corresponding cumul-ative probability distributions of pitting potentials (b) for four AlSi10Mg alloy samples in 3.5%NaClsolution
Fig.9  Fitting electrochemical parameters of polarization curves of four AlSi10Mg alloy samples in 3.5%NaCl solution: (a) corrosion current density, (b) corrosion potential
ConstructionangleRs / Ω·cm2CPE1/ 10-6 Ω-1·cm-2·s-nn1Rf/ 104 Ω·cm2CPE2/ 10-5 Ω-1·cm-2·s-nn2Rct/ 104 Ω·cm2
Vertical 90°9.46 ± 1.0910.48 ± 1.010.93 ± 0.016.53 ± 0.733.75 ± 1.310.74 ± 0.133.95 ± 1.60
Braced 45°8.77 ± 0.459.02 ± 0.470.94 ± 0.017.58 ± 1.364.12 ± 1.600.76 ± 0.134.62 ± 1.23
Unbraced 45°10.01 ± 0.739.50 ± 0.780.93 ± 0.016.74 ± 1.423.26 ± 1.320.65 ± 0.104.46 ± 1.63
Horizontal 0°9.01 ± 0.4310.14 ± 1.540.94 ± 0.016.40 ± 2.034.02 ± 1.890.79 ± 0.143.53 ± 1.02
Table 1  Electrochemical parameters obtained by fitting the electrochemical impedance spectra of four AlSi10Mg alloy samples in 3.5%NaCl solution
Fig.11  SEM surface morphologies of four AlSi10Mg alloy samples after immersion in 3.5%NaCl solution for 4 h: (a) Vertical 90°, (b) Braced 45°, (c) Unbraced 45°, (d) Horizontal 0°
Fig.12  SEM morphology (a) and EDS element mappings (b-d) of hole induced corrosion for Vertical 90°sample after 4 h immersion in 3.5%NaCl solution
[1] Yi S, Zhou S X, Ye P, et al. Microstructure and corrosion resistance of Cu-containing Fe-Mn-Cr-Ni medium-entropy alloy prepared by selective laser melting [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1589
易 铄, 周生璇, 叶 鹏 等. 选区激光熔化成形含Cu中熵合金的微观组织及耐腐蚀性能 [J]. 中国腐蚀与防护学报, 2024, 44: 1589
[2] Hu Z J, Zhao Z, Deng X, et al. Microstructure and mechanical behavior of TiCN reinforced AlSi10Mg composite fabricated by selective laser melting [J]. Mater. Chem. Phys., 2022, 283: 125996
doi: 10.1016/j.matchemphys.2022.125996
[3] Limbasiya N, Jain A, Soni H, et al. A comprehensive review on the effect of process parameters and post-process treatments on microstructure and mechanical properties of selective laser melting of AlSi10Mg [J]. J. Mater. Res. Technol., 2022, 21: 1141
doi: 10.1016/j.jmrt.2022.09.092
[4] Lei T, Chen S G, Liu X L, et al. Corrosion behavior of laser additive manufacturing AlSi10Mg Al-alloy in ethylene glycol coolant and detection of coolant degradation [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 1014
雷 涛, 陈绍高, 刘秀利 等. 乙二醇冷却液的劣化检测及增材制造AlSi10Mg铝合金在其中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2025, 45: 1014
[5] Wang C G, Zhu J X, Wang G W, et al. Effect of building orientation and heat treatment on the anisotropic tensile properties of AlSi10Mg fabricated by selective laser melting [J]. J. Alloy. Compd., 2022, 895: 162665
doi: 10.1016/j.jallcom.2021.162665
[6] Li X F, Yi D H, Wu X Y, et al. Effect of construction angles on microstructure and mechanical properties of AlSi10Mg alloy fabricated by selective laser melting [J]. J. Alloy. Compd., 2021, 881: 160459
doi: 10.1016/j.jallcom.2021.160459
[7] Sander G, Babu A P, Gao X, et al. On the effect of build orientation and residual stress on the corrosion of 316L stainless steel prepared by selective laser melting [J]. Corros. Sci., 2021, 179: 109149
doi: 10.1016/j.corsci.2020.109149
[8] Du D F, Dong A P, Shu D, et al. Influence of build orientation on microstructure, mechanical and corrosion behavior of Inconel 718 processed by selective laser melting [J]. Mater. Sci. Eng., 2019, 760A: 469
[9] Zhang S S, Liu Y C, Xu T W, et al. Effect of build-up direction and annealing on corrosion properties of selected laser melting Ti6Al4V alloy [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 995
张珊珊, 刘元才, 徐铁伟 等. 成型方向及热处理对选区激光熔化Ti6Al4V合金腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2025, 45: 995
doi: 10.11902/1005.4537.2024.220
[10] Calignano F. Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting [J]. Mater. Des., 2014, 64: 203
doi: 10.1016/j.matdes.2014.07.043
[11] Gu D D, Zhang H, Dai D H, et al. Anisotropic corrosion behavior of Sc and Zr modified Al-Mg alloy produced by selective laser melting [J]. Corros. Sci., 2020, 170: 108657
doi: 10.1016/j.corsci.2020.108657
[12] Salmi A, Atzeni E, Iuliano L, et al. Experimental analysis of residual stresses on AlSi10Mg parts produced by means of Selective Laser Melting (SLM) [J]. Proc. CIRP, 2017, 62: 458
doi: 10.1016/j.procir.2016.06.030
[13] Fathi P, Rafieazad M, Duan X, et al. On microstructure and corrosion behaviour of AlSi10Mg alloy with low surface roughness fabricated by direct metal laser sintering [J]. Corros. Sci., 2019, 157: 126
doi: 10.1016/j.corsci.2019.05.032
[14] Rubben T, Revilla R I, De Graeve I. Influence of heat treatments on the corrosion mechanism of additive manufactured AlSi10Mg [J]. Corros. Sci., 2019, 147: 406
doi: 10.1016/j.corsci.2018.11.038
[15] Pezzato L, Dabalà M, Gross S, et al. Effect of microstructure and porosity of AlSi10Mg alloy produced by selective laser melting on the corrosion properties of plasma electrolytic oxidation coatings [J]. Surf. Coat. Technol., 2020, 404: 126477
doi: 10.1016/j.surfcoat.2020.126477
[16] Zhao Z J, Dong C F, Kong D C, et al. Influence of pore defects on the mechanical property and corrosion behavior of SLM 18Ni300 maraging steel [J]. Mater. Charact., 2021, 182: 111514
doi: 10.1016/j.matchar.2021.111514
[17] Gollapudi S. Grain size distribution effects on the corrosion behaviour of materials [J]. Corros. Sci., 2012, 62: 90
doi: 10.1016/j.corsci.2012.04.040
[18] Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals [J]. Scripta Mater., 2010, 63: 1201
doi: 10.1016/j.scriptamat.2010.08.035
[19] Chen Y X, Lin D Y, Han J C, et al. Corrosion susceptibility of different planes of AlMgScZr alloy produced by selective laser melting [J]. J. Manuf. Process., 2022, 84: 240
doi: 10.1016/j.jmapro.2022.09.043
[20] Treacy G M, Breslin C B. Electrochemical studies on single-crystal aluminium surfaces [J]. Electrochim. Acta, 1998, 43: 1715
doi: 10.1016/S0013-4686(97)00305-8
[1] ZHANG Zequn, LUO Xinjie, LIU Pengfei, DONG Kai, ZHUO Xianqin, WU Junsheng, ZHANG Bowei. Influence of TiC Particles on Microstructure and Corrosion Performance of Laser Powder Bed Fusion Al-Mg-Sc-Zr Alloy[J]. 中国腐蚀与防护学报, 2026, 46(1): 92-102.
[2] ZHOU Xiaobao, WANG Ziteng, REN Yanjie, DONG Shaoyang, GAN Lang, LI Cong. Hot Corrosion Behavior of CoCrNi Medium-entropy Alloys Fabricated by Laser Powder Bed Fusion[J]. 中国腐蚀与防护学报, 2026, 46(1): 115-125.
[3] ZHENG Wentao, LU Feixue, DU Kai, WANG Zhihui, JIA Hailong. Effect of Shot Peening on Surface Properties of 7075 Al-alloy Sheet[J]. 中国腐蚀与防护学报, 2025, 45(3): 765-772.
[4] ZHAO Jie, XU Guangxu, ZHANG Hongwei, LI Jingfa, LV Ran, WANG Jialong, YAN Donglei. Coupling Effect of Hydrogen Embrittlement and Corrosion of X80 Pipeline Steel in Hydrogen-doped Natural Gas[J]. 中国腐蚀与防护学报, 2025, 45(2): 407-415.
[5] SU Zhicheng, ZHANG Xian, CHENG Yan, LIU Jing, WU Kaiming. Comparative Study on Stress Corrosion Cracking Behavior of Ultrafine Bainitic Steel and Q&P Steel with Same Composition in Seawater[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[6] GAO Zhiyue, JIANG Bo, FAN Zhibin, WANG Xiaoming, LI Xingeng, ZHANG Zhenyue. Corrosion Behavior of Typical Grounding Materials in Artificial Alkaline Soil Solution[J]. 中国腐蚀与防护学报, 2023, 43(1): 191-196.
[7] CHEN Tingting, WU Xiaolei, HAN Peide. Gradient Nanotwin Structure Prepared by SMAT Technology on S31254 Super Austenitic Stainless Steel Surface and Its Corrosion Behavior in 10%NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(6): 973-978.
[8] LV Yingxi. Analysis of Cl- Corrosion Resistance of High Mo Super Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2022, 42(5): 765-770.
[9] WANG Tong, MENG Huimin, GE Pengfei, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Electrochemical Corrosion Behavior of 2Cr-1Ni-1.2Mo-0.2V Steel in NH4H2PO4 Solution[J]. 中国腐蚀与防护学报, 2022, 42(4): 551-562.
[10] WANG Jiaqi, LI Li, LIU Tingting. Corrosion Behavior of Al-Mn Alloys for Industrial Building Roof[J]. 中国腐蚀与防护学报, 2022, 42(4): 693-698.
[11] ZHANG Rui,LI Yu,GUAN Lei,WANG Guan,WANG Fuyu. Effect of Heat Treatment on Electrochemical Corrosion Behavior of Selective Laser Melted Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[12] Yuan SHI,Zhuji JIN,Guannan JIANG,Zuotao LIU,Zhongzheng ZHOU,Zebei WANG. Electrochemical Corrosion of YG15 Cemented Carbide[J]. 中国腐蚀与防护学报, 2019, 39(3): 253-259.
[13] Kai WANG, Yaoyong YI, Qinghua LU, Jianglong YI, Zexin JIANG, Jinjun MA, Yu ZHANG. Effect of Peak Temperatures on Corrosion Behavior of Thermal Simulated Narrow-gap Weld Q690 High Strength Steel[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[14] Boqiang SONG,Xu CHEN,Guiyang MA,Rui LIU. Effect of SRB on Corrosion Behavior of X70 Pipeline Steel in Near-neutral pH Solution[J]. 中国腐蚀与防护学报, 2016, 36(3): 212-218.
[15] Jiamei WANG,Hui LU,Zhengang DUAN,Lefu ZHANG,Fanjiang MENG,Xuelian XU. Effect of Temperature on Electrochemical Behavior of Alloy 690 in Simulated PWR Secondary Circuit Water[J]. 中国腐蚀与防护学报, 2016, 36(2): 113-120.
No Suggested Reading articles found!