Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2026, Vol. 46 Issue (1): 155-164    DOI: 10.11902/1005.4537.2025.217
Current Issue | Archive | Adv Search |
Preparation and High-temperature Oxidation Resistance of Laser Clad Si-ZrB2-Ti-Cr Multi-component Coatings on Mo-alloy
LIU Hailong1, WANG Li1(), ZHAO Weiguo1, HAN Jiayu1, WANG Qingsong1, LONG Jiayi1, HE Xing2, GAO Lili1, WANG Hua3, HU Ping1()
1.National and Local Joint Engineering Research Center for Functional Materials Processing, School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2.State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials, Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
3.Xi'an Head Accurate Materials Testing Co. Ltd., Xi'an 710599, China
Cite this article: 

LIU Hailong, WANG Li, ZHAO Weiguo, HAN Jiayu, WANG Qingsong, LONG Jiayi, HE Xing, GAO Lili, WANG Hua, HU Ping. Preparation and High-temperature Oxidation Resistance of Laser Clad Si-ZrB2-Ti-Cr Multi-component Coatings on Mo-alloy. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 155-164.

Download:  HTML  PDF(23660KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mo-alloys are widely used in high-temperature environments foraerospace, nuclear energy and nuclear power industries due to their high melting point, excellent electrical and thermal conductivity and outstanding high-temperature mechanical properties. However, Mo-alloys are very susceptible to oxidation and failure in high-temperature service environments. In this study, Si-ZrB2-Ti-Cr multicomponent anti-oxidation coatings were fabricated on Mo-alloys via laser cladding, and the effect of laser power on themicrostructure, phase composition, and high-temperature oxidation resistance of the acquired coatings was systematically investigated. The results show that when the laser power for cladding is 2000 W, the main constituents of the coating is metastable Mo5Si3 phase rather than the stable MoSi2 phase, the metastable Mo5Si3 phase tens to generate MoO3 during high-temperature oxidation process, which is highly volatile,, thus the coating has poor oxidation resistance. When the laser power is 3000 W, the acquired coating is ~900 μm in thickness, which showed the best oxidation resistance at 1200 oC with formation of a dense oxide scale on surface composed of SiO2, TiO2, and ZrO2. As the laser power was increased to 4500 W, the excessive heat input caused too much Mo to be incorporated into the coating from the substrate. During the oxidation process MoO3 was prone to volatilize, making the oxide scale porous and loose, thereby reducing the oxidation resistance. These findings may provide a reference for further R & D of high-temperature protective coatings on Mo-alloys.

Key words:  Mo-alloy      laser cladding      coating      MoSi2      oxidation resistance     
Received:  08 July 2025      32134.14.1005.4537.2025.217
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52404410);National Natural Science Foundation of China(52374401);Shaanxi Natural Science Foundation Youth Project(2024JC-YBQN-0367);China Association for Science and Technology Young Talent Support Program 2023, Shaanxi Sanqin Talent Introduction Program Youth Project 2023 and Shaanxi Key R&D Program(2024QCYKXJ-116)

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.217     OR     https://www.jcscp.org/EN/Y2026/V46/I1/155

Fig.1  Morphology of the mixed powder and corresponding EDS surface mapping results
Fig.2  Macroscopic morphologies of coating under different laser powers: (a) 2000 W; (b) 3000 W; (c) 4500 W
Fig.3  Cross-sectional microstructure of coatings prepared at different laser powers: (a, b) 2000 W; (c, d) 3000 W; (e, f) 4500 W
Fig.4  Cross-sectional morphology (a) and EDS analysis results (b, c) of the coating prepared at a laser power of 2000 W
Fig.5  Cross-sectional morphology (a) and EDS analysis results (b, c) of the coating prepared at a laser power of 3000 W
Fig.6  Cross-sectional morphology (a) and EDS analysis results (b, c) of the coating prepared at a laser power of 4500 W
Fig.7  XRD patterns of coating surface prepared at different laser powers
Fig.8  Macroscopic morphologies of the coating after oxidation prepared by different laser powers: (a) 2000 W, (b) 3000 W, (c) 4500 W
Fig.9  EDS spectrum results of the cross-section of the coating sample after oxidation: (a) 2000 W, (b) 3000 W, (c) 4500 W
Fig.10  Schematic diagrams of the oxidation mechanisms of coatings prepared at different laser powers: (a) 2000 W, (b) 3000 W, (c) 4500 W
[1] Wei Y, Yang H L, Tao L Z, et al. Research progress and development of strengthening-toughening methods for molybdenum alloys prepared by powder metallurgy [J]. J. Alloy. Compd., 2025, 1010: 177099
doi: 10.1016/j.jallcom.2024.177099
[2] Wang Y, Wang D Z, Sun A K, et al. The advance on the oxidation resistance coatings of molybdenum and its alloys [J]. Mater. Rep., 2012, 26(1): 137
汪 异, 王德志, 孙翱魁 等. 钼及其合金氧化防护涂层的研究进展 [J]. 材料导报, 2012, 26(1): 137
[3] Zhou H D, Zhang Y L, Xia C L, et al. Oxidation behavior of molybdenum alloy coatings at 1200 oC [J]. Powder Metall. Technol., 2025, 43: 123
周红灯, 张玉玲, 夏春林 等. 钼合金涂层在1200 ℃下的氧化行为 [J]. 粉末冶金技术, 2025, 43: 123
[4] Zhang Y Y, Li Y G, Bai C G. Microstructure and oxidation behavior of Si-MoSi2 functionally graded coating on Mo substrate [J]. Ceram. Int., 2017, 43: 6250
doi: 10.1016/j.ceramint.2017.02.024
[5] Li F J, Chen M H, Zhang Z M, et al. Preparation and thermal shock behavior of a metal-enamel high-temperature protective coating [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 411
李烽杰, 陈明辉, 张哲铭 等. 金属搪瓷高温防护涂层的制备及其抗热震行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 411
doi: 10.11902/1005.4537.2019.137
[6] Cui C P, Li Q, Fan M Y, et al. Development status and prospects of molybdenum alloys [J]. Chem. Enterp. Manage., 2024, (14): 54
崔超鹏, 李 强, 范梦宇 等. 钼合金的发展现状及展望 [J]. 化工管理, 2024, (14): 54
[7] Guo M, Luan C H, Qu J F, et al. Research progress of high-strength molybdenum alloys and their composite materials [J]. Mater. Rep., 2023, 37(): 348
郭 敏, 栾承华, 曲俊峰 等. 高强钼合金及其复合材料的研究进展 [J]. 材料导报, 2023, 37(): 348
[8] Cai Z Y, Liu S N, Xiao L R, et al. Oxidation behavior and microstructural evolution of a slurry sintered Si-Mo coating on Mo alloy at 1650 oC [J]. Surf. Coat. Technol., 2017, 324: 182
doi: 10.1016/j.surfcoat.2017.05.054
[9] Wang X J, Yang J Z, Hu B L, et al. Investigation on the recrystallization and mechanical properties of a novel TZM alloy with heat treatment [J]. Mater. Lett., 2024, 361: 136092
doi: 10.1016/j.matlet.2024.136092
[10] Yue G, Li N, Luo Y C, et al. Research progress on the interface diffusion induced degradation and anti-diffusion technology of silicide coatings on refractory alloys [J]. China Tungsten Ind., 2024, 39(3): 10
岳 高, 李 宁, 骆玉城 等. 难熔合金硅化物涂层界面扩散致退化与阻扩散技术研究进展 [J]. 中国钨业, 2024, 39(3): 10
[11] Zhao G, Liu J, Zhou X J, et al. Study on preparation and performance of composite silicide coating on Nb-W alloy for space engine [J]. Rare Met. Cemented Carbides, 2023, 51(5): 44
赵 刚, 刘 尖, 周小军 等. 航天发动机用铌钨合金复合硅化物涂层制备及性能研究 [J]. 稀有金属与硬质合金, 2023, 51(5): 44
[12] Zhai R X, Song P, Huang T H, et al. Microstructure and oxidation behaviour of MoSi2 coating combined MoB diffusion barrier layer on Mo substrate at 1300 oC [J]. Ceram. Int., 2021, 47: 10137
doi: 10.1016/j.ceramint.2020.12.162
[13] Li T T. Preparation and research of high temperature oxidation resistance coating on molybdenum alloy [D]. Xi'an: Xi'an University of Technology, 2021
李婷婷. 钼合金表面高温抗氧化涂层的制备与研究 [D]. 西安: 西安理工大学, 2021
[14] Tian X D, Guo X P, Sun Z P, et al. Oxidation resistance comparison of MoSi2 and B-modified MoSi2 coatings on pure Mo prepared through pack cementation [J]. Mater. Corros., 2015, 66: 681
[15] Long J Y, Wang L, Zhao W G, et al. Effect of PVB addition on microstructure and oxidation resistance of silicide coatings on TZM Mo-alloy by slurry method [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 1717
龙佳怡, 王 力, 赵卫国 等. 料浆法聚乙烯醇缩丁醛添加量对钼合金硅化物涂层微观结构及抗氧化性能的影响 [J]. 中国腐蚀与防护学报, 2025, 45: 1717
doi: 10.11902/1005.4537.2025.054
[16] Wang Y. Preparation and properties of Mo-based alloys oxidation resistance coatings at elevated temperature [D]. Changsha: Central South University, 2014
汪 异. 钼基合金高温抗氧化涂层的制备及其性能研究 [D]. 长沙: 中南大学, 2014
[17] Zhao W G, Wang L, Hu P, et al. Enhancing the oxidation resistance of TZM alloy by laser-clading MoSi2-TiVAlZrNb composite coating [J]. Surf. Coat. Technol., 2024, 478: 130471
doi: 10.1016/j.surfcoat.2024.130471
[18] Wang Y, Wang D Z, Yan J H, et al. Preparation and characterization of molybdenum disilicide coating on molybdenum substrate by air plasma spraying [J]. Appl. Surf. Sci., 2013, 284: 881
doi: 10.1016/j.apsusc.2013.08.029
[19] Zhang W, Shang X H, Hu M L, et al. Effect of laser power on microstructure and wear resistance of laser cladding Stellite 6 alloy coatings [J]. Powder Metall. Technol., 2025, 43: 170
张 维, 尚宪和, 胡明磊 等. 激光功率对激光熔覆Stellite 6合金涂层微观组织及耐磨性能的影响 [J]. 粉末冶金技术, 2025, 43: 170
[20] Hu K K, Tian Y X, Jiang X Z, et al. Microstructure regulation and performance of titanium alloy coating with Ni interlayer on the surface of mild steel by laser cladding [J]. Surf. Coat. Technol., 2024, 487: 130939
doi: 10.1016/j.surfcoat.2024.130939
[21] Li M K, Huang K P, Yi X M. Crack formation mechanisms and control methods of laser cladding coatings: A review [J]. Coatings, 2023, 13: 1117
doi: 10.3390/coatings13061117
[22] Syrtanov M S, Kashkarov E B, Abdulmenova A V, et al. High-temperature oxidation of Zr-1Nb zirconium alloy with protective Cr/Mo coating [J]. Surf. Coat. Technol., 2022, 439: 128459
doi: 10.1016/j.surfcoat.2022.128459
[23] Yan J H, Lin Y Z, Wang Y, et al. Refractory WMoNbVTa high-entropy alloy as a diffusion barrier between a molybdenum substrate and MoSi2 ceramic coating [J]. Ceram. Int., 2022, 48: 11410
doi: 10.1016/j.ceramint.2021.12.364
[24] Deng L. Study on the organization and properties of anti-temperature oxidation coating by laser cladding on molybdenum surface [D]. Chongqing: Chongqing University of Technology, 2024
邓 浪. 钼表面激光熔覆抗高温氧化涂层组织及性能研究 [D]. 重庆: 重庆理工大学, 2024
[25] Cui H X. Design, preparation and tribological properties of laser cladding Cu-Mo coating [D]. Lanzhou: Lanzhou University of Technology, 2024
崔鸿勋. 激光熔覆Cu-Mo涂层的设计制备及摩擦学性能研究 [D]. 兰州: 兰州理工大学, 2024
[26] Yuan X H, Li D J, Wang T J, et al. Oxidation behavior of three different Ni-Cr coatings in 630 oC/25 MPa supercritical water [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 119
袁小虎, 李定骏, 王天剑 等. 超临界水环境中三种Ni-Cr涂层氧化特性研究 [J]. 中国腐蚀与防护学报, 2024, 44: 119
[27] Iizuka T, Kita H. Oxidation behavior and effect of oxidation on mechanical properties of Mo5Si3 particle-reinforced Si3N4 composites [J]. Mater. Sci. Eng., 2004, 374A: 115
[28] Wang D Z, Liu X Y, Zuo T Y. Low temperature oxidation behavior of MoSi2-Mo5Si3 composites [J]. Rare Met. Mater. Eng., 2002, 31: 48
王德志, 刘心宇, 左铁镛. MoSi2-Mo5Si3复合材料的低温氧化行为 [J]. 稀有金属材料与工程, 2002, 31: 48
[29] Zhang H X, Chen L, Chen H. Study on preparation and oxidation properties of Mo5Si3-Al2O3 composites [J]. Powder Metall. Ind., 2016, 26(3): 55
张红霞, 陈 莉, 陈 辉. Mo5Si3-Al2O3复合材料的制备及抗氧化性能研究 [J]. 粉末冶金工业, 2016, 26(3): 55
[30] Alam M Z, Venkataraman B, Sarma B, et al. MoSi2 coating on Mo substrate for short-term oxidation protection in air [J]. J. Alloy. Compd., 2009, 487: 335
doi: 10.1016/j.jallcom.2009.07.141
[31] Majumdar S. Formation of MoSi2 and Al doped MoSi2 coatings on molybdenum base TZM (Mo-0.5Ti-0.1Zr-0.02C) alloy [J]. Surf. Coat. Technol., 2012, 206: 3393
doi: 10.1016/j.surfcoat.2012.01.062
[32] Yu C, Liu Z, Qin Y, et al. Preparation and structural properties of MoSi2 coatings on molybdenum-rhenium alloys [J]. J. Inner Mongolia Univ. Sci. Technol., 2024, 43: 200
喻 冲, 刘 喆, 秦 媛 等. 钼铼合金表面MoSi2涂层制备及其结构性能 [J]. 内蒙古科技大学学报, 2024, 43: 200
[33] Liang Z F, Liang Z Z, Zhang J L, et al. Research on wear resistance of MoSi2 particle reinforced Co based coatings by laser cladding [J]. Mater. Prot., 2024, 57(3): 88
梁泽芬, 梁泽忠, 张继林 等. 激光熔覆MoSi2颗粒增强Co基涂层的耐磨性能研究 [J]. 材料保护, 2024, 57(3): 88
[34] Lu J, Weng Y T, Wan A H, et al. Unveiling the effect of Si on the microstructure and properties of AlFeCoCrNi high entropy alloy coating [J]. J. Therm. Spray Technol., 2023, 32: 2250
doi: 10.1007/s11666-023-01629-8
[35] Zhang Z Y, Park Y, Kim D H, et al. High-temperature oxidation performance of novel environmental barrier coating 50HfO2-50SiO2/Y x Yb(2- x)Si2O7 at 1475 oC [J]. J. Eur. Ceram. Soc., 2023, 43: 1127
doi: 10.1016/j.jeurceramsoc.2022.10.082
[1] HU Hongyu, WANG Yuefei, YAN Haixin, SHI Jianjun, WU Duoli. Research Progress on Laser Cladding Anti-corrosion and Wear-resistant Coatings for Hydraulic Support Column[J]. 中国腐蚀与防护学报, 2026, 46(1): 25-36.
[2] DING Hao, DU Lingxiao, SHU Qin, CAO Fuyang, XIE Yun, PENG Xiao. Effect of WC Content on Wear and Corrosion Performance of Laser Cladding AlCoCrFeNi2.1 Eutectic High-entropy Alloy Coating[J]. 中国腐蚀与防护学报, 2026, 46(1): 126-136.
[3] JI Yunhan, WANG Qinying, ZHENG Jie, LI Yixuan, XI Yuchen, DONG Lijin, ZHANG Yangfei, BAI Shulin. Microstructure and Tribocorrosion Behavior of Laser Cladding Coating of a Non-magnetic Drill Collar Stainless Steel[J]. 中国腐蚀与防护学报, 2026, 46(1): 175-185.
[4] TAN Jingsha, GUO Yichao, CHEN Junlin, GAI Wenfeng, MENG Guozhe. Chloride Ion Capture and Responsive Corrosion Inhibition Behavior of ZnAlCe-NO2 Hydrotalcite @ Silane Coating[J]. 中国腐蚀与防护学报, 2026, 46(1): 207-219.
[5] YANG Xiaowen, CHEN Zehao, YANG Shasha, WANG Qunchang, WANG Jinlong, CHEN Minghui, WANG Fuhui. Short-term Hot Corrosion Behavior of Nickel-based Single Crystal Superalloy N5 and its Nanocrystalline Coating[J]. 中国腐蚀与防护学报, 2026, 46(1): 252-260.
[6] YU Baoyi, MEI Tong, ZHENG Li, CHANG Dongxu, JI Meilin. Microstructure and Corrosion Performance of Cold Sprayed TC4-WC Coatings[J]. 中国腐蚀与防护学报, 2026, 46(1): 291-298.
[7] LIU Jianyang, HAN Yang, YU Meiyan, WANG Wei. Recent Advances in Light-responsive Multifunctional Self-healing Coatings[J]. 中国腐蚀与防护学报, 2025, 45(6): 1493-1507.
[8] ZHUANG Zhaotao, YAN Haojie, XIE Bing, GUI Ye, SUN Qingqing, WU Liankui, CAO Fahe. High-temperature Oxidation Behavior of Liquid-phase Fluorination Treated Ti45Al8.5Nb Alloy[J]. 中国腐蚀与防护学报, 2025, 45(6): 1517-1527.
[9] WANG De, ZHANG Fan, WANG Xingqi, ZHANG Hexin, ZHAO Chengzhi, YANG Yange. Long-term Corrosion Resistance of Carbon Steel and Al-alloy with Single Component Fluorocarbon Modified Epoxy Coating[J]. 中国腐蚀与防护学报, 2025, 45(6): 1549-1562.
[10] LONG Jiayi, WANG Li, ZHAO Weiguo, HAN Jiayu, WANG Qingsong, LIU Hailong, GAO Lili, HU Ping, FENG Pengfa. Effect of PVB Addition on Microstructure and Oxidation Resistance of Silicide Coatings on TZM Mo-alloy by Slurry Method[J]. 中国腐蚀与防护学报, 2025, 45(6): 1717-1724.
[11] GUO Yujie, LI Yanhui, XIA Da-Hai, HU Wenbin. Data Analysis and Physical Model of Electrochemical Impedance Spectroscopy for Corrosion Systems: Progresses and Challenges[J]. 中国腐蚀与防护学报, 2025, 45(5): 1143-1160.
[12] LI Jie, MENG Fandi, SUN Xuesi, LI Jiani, CHEN Sihan, LI Zelan, CHI Jianning, QI Haixia, WANG Fuhui, LIU Li. Lifetime Prediction for Organic Coatings via Feature Integration of Multi-Scale Images[J]. 中国腐蚀与防护学报, 2025, 45(5): 1205-1218.
[13] LI Yanyan, LI Shuai, DONG Chao, LI Dongqiang, BAO Zebin, ZHU Shenglong. Corrosion Behavior of Atmospheric Plasma Spray Thermal Barrier Coatings at 900 °C Beneath NaCl Deposits in Oxygen Flow Carrying Water Vapor[J]. 中国腐蚀与防护学报, 2025, 45(5): 1233-1243.
[14] GENG Haojun, XIE Fangkun, YANG Lingxu, WANG Yanli, LIU Huijun, ZENG Chaoliu. Preparation and Corrosion Behavior of (La0.2Nd0.2Tm0.2Yb0.2-Lu0.2)2Zr2O7 High Entropy Ceramic Beneath Deposits of Molten CaO-MgO-Al2O3-SiO2[J]. 中国腐蚀与防护学报, 2025, 45(5): 1244-1252.
[15] SUN Fanghong, REN Yanjie, SONG Wenqing. Research Status and Progress of Laser Clad Coatings on 42CrMo Steel[J]. 中国腐蚀与防护学报, 2025, 45(4): 849-858.
No Suggested Reading articles found!