Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (3): 765-772    DOI: 10.11902/1005.4537.2024.143
Current Issue | Archive | Adv Search |
Effect of Shot Peening on Surface Properties of 7075 Al-alloy Sheet
ZHENG Wentao1(), LU Feixue1, DU Kai1, WANG Zhihui2, JIA Hailong2
1.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2.Electric Power Research Institute, State Grid Qinghai Electric Power Company, Xining 810000, China
Cite this article: 

ZHENG Wentao, LU Feixue, DU Kai, WANG Zhihui, JIA Hailong. Effect of Shot Peening on Surface Properties of 7075 Al-alloy Sheet. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 765-772.

Download:  HTML  PDF(16591KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

7075 Al-alloy plates of 6 mm in thickness were subjected to shot peening treatments with varying parameters. Then the effect of shot peening on the microstructure, surface-roughness and -hardness as well as corrosion performance was assessed, aiming in optimization of the shot pinning processes. The results indicated that shot peening led to grain refinement and work hardening of the shot peened surface. Both the roughness and hardness increased with the increase of the ball diameter and the injection pressure. As the repetition rate of shot peening area increased from 100% to 300%, the hardness increased, while the roughness rose firstly and then decreased. When the ball diameter was 0.1 mm and the injection pressure was 0.3 MPa, the hardness reached 220.7 HV with the repetition rate of 300%, while the roughness reached a minimum value of 0.623 μm with the repetition rate of 200%. In comparison with the single shot peening, the double shot peening may result in significant reduction in surface roughness from 4.131 μm to 2.232 μm, but in slight increment in hardness from 223 HV to 227 HV. Besides, the corrosion potential increased from -0.7276 V for the alloy before shot pinning to -0.6816 V for the alloy after twice shot pinning, indicating that the double peening can significantly enhance the corrosion resistance of the 7075 Al-alloy.

Key words:  7075 Al-alloy      shot peening      dual shot peening      surface roughness      electrochemical corrosion     
Received:  06 May 2024      32134.14.1005.4537.2024.143
ZTFLH:  TG146.21  
Fund: National Natural Science Foundation of China(52305396)
Corresponding Authors:  ZHENG Wentao, E-mail: wenntaozheng@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.143     OR     https://www.jcscp.org/EN/Y2025/V45/I3/765

SampleProjectile diameter / mmInjection pressure / MPaCoverage / %Roughness / μmHardness / HV
00000.162155.3
10.040.31000.243181.5
20.040.41000.623187.3
30.040.51000.784191.0
40.10.31001.299191.5
50.10.41001.746205.2
60.10.51001.878210.8
70.40.31002.382206.2
80.40.41004.080216.4
90.40.51004.131223.0
100.10.32000.623217.2
110.10.33000.842220.7
Table 1  Shot peening process parameters and surface roughness and hardness of treated Al-alloy samples
Fig.1  Surface morphologies of 7075 Al-alloy after primary shot peening with the coverages of 100% (a1, a2), 200% (b1, b2) and 300% (c1, c2)
Fig.2  Surface morphologies of 7075 Al-alloy before (a1, a2) and after (b1, b2) dual shot peening
Fig.3  Metallographic microstructures of 7075 Al-alloy before (a) and after (b) primary shot peening
Fig.4  XRD patterns of 7075 Al-alloy before and after primary shot peening (a) and local enlarged diagram of Fig.4a (b)
Fig.5  Polarization curves of 7075 Al-alloy untreated and treated by primary and dual shot peening
SampleE / VI0 / A·cm-2
Untreated-0.72764.584 × 10-4
No.9-0.70313.443 × 10-4
Dual shot peening-0.68161.144 × 10-4
Table 2  Fitting results of polarization curves of 7075 Al-alloy untreated and treated by primary and dual shot peening
Fig.6  Nyquist plots of 7075 Al-alloy untreated and treated by primary and dual shot peening
Fig.7  Equivalent circuit diagram
SampleRs / Ω·cm2CPEnRct / Ω·cm2RL / Ω·cm2L / H
Untreated3.5111.147 × 10-40.7786460.269.3412.87
No.93.6167.274 × 10-50.7254889.4844.61237
Dual shot peening5.3437.690 × 10-50.685115931213.52321
Table 3  Fitting results of EIS
Fig.8  Surface morphologies (a1, b1) and EDS analysis results (b1, b2) of 7075 Al-alloy without (a1, a2) and with (b1, b2) dual shot peening after electrochemical corrosion
[1] Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys [J]. Mater. Des., 2014, 56: 862
[2] Niu T, Wang X Y, Wu X C. Effect of shot peening process on surface properties and wear behavior of 4Cr5Mo2V steel [J]. Heat Treat. Met., 2023, 48(12): 153
牛 童, 王昕宇, 吴晓春. 喷丸工艺对4Cr5Mo2V钢表面性能与磨损行为的影响 [J]. 金属热处理, 2023, 48(12): 153
[3] Wang C, Li K F, Hu X Y, et al. Effects of shot peening-induced residual stresses on fatigue crack propagation behavior of AISI 304 stainless steel [J]. Surf. Technol., 2021, 50(9): 81
王 成, 李开发, 胡兴远 等. 喷丸强化残余应力对AISI 304 不锈钢疲劳裂纹扩展行为的影响 [J]. 表面技术, 2021, 50(9): 81
[4] Mhaede M. Influence of surface treatments on surface layer properties, fatigue and corrosion fatigue performance of AA7075 T73 [J]. Mater. Des., 2012, 41: 61
[5] Wu P S, Zhang J X, Zhou B M, et al. Effect of shot peening pressure on the surface state and fatigue properties of GH3535 alloy [J]. Rare Met. Mater. Eng., 2022, 51: 4610
吴培松, 张继祥, 周伯谋 等. 喷丸压力对GH3535合金表面状态及疲劳性能的影响 [J]. 稀有金属材料与工程, 2022, 51: 4610
[6] Yang S, Zeng W, Yang J S. Characterization of shot peening properties and modelling on the fatigue performance of 304 austenitic stainless steel [J]. Int. J. Fatigue, 2020, 137: 105621
[7] Gao T, Sun Z D, Xue H Q, et al. Effect of surface mechanical attrition treatment on high cycle and very high cycle fatigue of a 7075-T6 aluminium alloy [J]. Int. J. Fatigue, 2020, 139: 105798
[8] Peral L B, Zafra A, Bagherifard S, et al. Effect of warm shot peening treatments on surface properties and corrosion behavior of AZ31 magnesium alloy [J]. Surf. Coat. Technol., 2020, 401: 126285
[9] Wang X, Xu C L, Li Z X, et al. Effect of shot peening intensity and surface coverage on room-temperature fatigue property of TC4 titanium alloy [J]. J. Mater. Eng., 2020, 48(9): 138
王 欣, 许春玲, 李臻熙 等. 喷丸强度和表面覆盖率对TC4钛合金室温疲劳性能的影响 [J]. 材料工程, 2020, 48(9): 138
[10] He J X, Wang Z, Gan J, et al. Numerical simulation on surface integrity of 42CrMo steel after dual shot peening [J]. Surf. Technol., 2020, 49(6): 216
何嘉禧, 汪 舟, 甘 进 等. 二次喷丸42CrMo钢表面完整性的数值模拟研究 [J]. 表面技术, 2020, 49(6): 216
[11] Gai P T, Chen F L, Shang J Q, et al. Recent situation and development trend of shot peening on surface integrity [J]. Aeron. Manuf. Technol., 2016, (20): 16
盖鹏涛, 陈福龙, 尚建勤 等. 喷丸强化对表面完整性影响的研究现状与发展 [J]. 航空制造技术, 2016, (20): 16
[12] Xu G, Xue T, Hu Y H, et al. Effect of shot peening coverage on surface integrity of 2024-T351 aluminum alloy [J]. Aeronaut. Manuf. Technol., 2024, 67: 106
徐 刚, 薛 涛, 胡彦华 等. 喷丸覆盖率对 2024-T351 铝合金表面完整性的影响 [J]. 航空制造技术, 2024, 67: 106
[13] Bao L, Li K, Zheng J Y, et al. Surface characteristics and stress corrosion behavior of AA 7075-T6 aluminum alloys after different shot peening processes [J]. Surf. Coat. Technol., 2022, 440: 128481
[14] He B H, Zhou W L, Cheng X, et al. Surface integrity and fatigue properties of shot peening strengthened 7A65 aluminum alloy [J]. J. Netshape Form. Eng., 2023, 15(6): 1
贺柏涵, 周文龙, 程 旭 等. 7A65铝合金喷丸强化表面完整性及疲劳性能 [J]. 精密成形工程, 2023, 15(6): 1
[15] Unal O, Varol R. Surface severe plastic deformation of AISI 304 via conventional shot peening, severe shot peening and repeening [J]. Appl. Surf. Sci., 2015, 351: 289
[16] Gao Y K. Residual stresses of GH742 superalloy induced by laser peening and shot peening [J]. Rare Met. Mater. Eng., 2016, 45: 2347
高玉魁. GH742高温合金激光冲击强化和喷丸强化残余应力 [J]. 稀有金属材料与工程, 2016, 45: 2347
[17] Klumpp A, Ruf M, Dietrich S, et al. Long crack propagation and closure in DC(T) specimens of Ni-based superalloy inconel 718 and stainless steel AISI 301 after shot peening [J]. Eng. Fract. Mech., 2022, 269: 108551
[18] Wu J Z, Wei P T, Guagliano M, et al. A study of the effect of dual shot peening on the surface integrity of carburized steel: combined experiments with dislocation density-based simulations [J]. Arch. Civ. Mech. Eng., 2024, 24: 83
[19] Huang H, Niu J T, Yin J G, et al. Surface integrity and corrosion resistance of 2A97 Al-Li alloy after shot peening [J]. Surf. Technol., 2024, 53(15): 184
黄 浩, 牛金涛, 尹建国 等. 2A97 铝锂合金喷丸表面完整性及耐腐蚀性能分析 [J]. 表面技术, 2024, 53(15): 184
[20] Hu L L, Zhao X Y, Liu P, et al. Effect of AC electric field and thickness of electrolyte film on corrosion behavior of A6082-T6 Al alloy [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 342
胡露露, 赵旭阳, 刘 盼 等. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 342
[21] Duan T G, Li Z, Peng W S, et al. Corrosion characteristics of 5A06 Al-alloy exposed in Natural deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 352
段体岗, 李 祯, 彭文山 等. 深海环境5A06铝合金腐蚀行为与表面特性 [J]. 中国腐蚀与防护学报, 2023, 43: 352
[22] Si W T, Zhang J H, Gao R J. Preparation of superamphiphobic surface on AZ31B magnesium alloy and Its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 381
司伟婷, 张吉昊, 高荣杰. AZ31B 镁合金超双疏表面的制备及其耐蚀性研究 [J]. 中国腐蚀与防护学报, 2024, 44: 381
[23] Lv Y T, Zhao B J, Zhang H B, et al. Improving corrosion resistance properties of nickel-aluminum bronze (NAB) alloys via shot peening treatment [J]. Mater. Trans., 2019, 60: 1629
[1] ZHAO Jie, XU Guangxu, ZHANG Hongwei, LI Jingfa, LV Ran, WANG Jialong, YAN Donglei. Coupling Effect of Hydrogen Embrittlement and Corrosion of X80 Pipeline Steel in Hydrogen-doped Natural Gas[J]. 中国腐蚀与防护学报, 2025, 45(2): 407-415.
[2] SU Zhicheng, ZHANG Xian, CHENG Yan, LIU Jing, WU Kaiming. Comparative Study on Stress Corrosion Cracking Behavior of Ultrafine Bainitic Steel and Q&P Steel with Same Composition in Seawater[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[3] LIU Hao, GUO Xiaokai, WANG Wei, WU Liankui, CAO Fahe, SUN Qingqing. Effect of Ultrasonic Shot Peening on Microstructure and Properties of a 7075 Al-alloy Rod[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[4] GAO Zhiyue, JIANG Bo, FAN Zhibin, WANG Xiaoming, LI Xingeng, ZHANG Zhenyue. Corrosion Behavior of Typical Grounding Materials in Artificial Alkaline Soil Solution[J]. 中国腐蚀与防护学报, 2023, 43(1): 191-196.
[5] CHEN Tingting, WU Xiaolei, HAN Peide. Gradient Nanotwin Structure Prepared by SMAT Technology on S31254 Super Austenitic Stainless Steel Surface and Its Corrosion Behavior in 10%NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(6): 973-978.
[6] LV Yingxi. Analysis of Cl- Corrosion Resistance of High Mo Super Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2022, 42(5): 765-770.
[7] WANG Jiaqi, LI Li, LIU Tingting. Corrosion Behavior of Al-Mn Alloys for Industrial Building Roof[J]. 中国腐蚀与防护学报, 2022, 42(4): 693-698.
[8] WANG Tong, MENG Huimin, GE Pengfei, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Electrochemical Corrosion Behavior of 2Cr-1Ni-1.2Mo-0.2V Steel in NH4H2PO4 Solution[J]. 中国腐蚀与防护学报, 2022, 42(4): 551-562.
[9] LIU Xing, RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, LONG Bin. Effect of Surface State on Corrosion Resistance of TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
[10] ZHAN Yuting, WANG Jianhua, JIN Kai, CHEN Jianbin, WANG Hujun, FANG Jun, CHEN Weilin, SUI Lei. Effect of Shot Peening on Fatigue Life Performance of a Home-made Nut[J]. 中国腐蚀与防护学报, 2021, 41(3): 395-399.
[11] ZHANG Rui,LI Yu,GUAN Lei,WANG Guan,WANG Fuyu. Effect of Heat Treatment on Electrochemical Corrosion Behavior of Selective Laser Melted Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[12] Yunhai MA. Effect of Shot Peening on Oxidation Resistance of Super 304H Steel in Supercritical Steam[J]. 中国腐蚀与防护学报, 2019, 39(3): 245-252.
[13] Yuan SHI,Zhuji JIN,Guannan JIANG,Zuotao LIU,Zhongzheng ZHOU,Zebei WANG. Electrochemical Corrosion of YG15 Cemented Carbide[J]. 中国腐蚀与防护学报, 2019, 39(3): 253-259.
[14] Kai WANG, Yaoyong YI, Qinghua LU, Jianglong YI, Zexin JIANG, Jinjun MA, Yu ZHANG. Effect of Peak Temperatures on Corrosion Behavior of Thermal Simulated Narrow-gap Weld Q690 High Strength Steel[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[15] Deqiang LIU,Liming KE,Weiping XU,Li XING,Yuqing MAO. Intergranular Corrosion Behavior of Friction-stir Welding Joint for 20 mm Thick Plate of 7075 Al-alloy[J]. 中国腐蚀与防护学报, 2017, 37(3): 293-299.
No Suggested Reading articles found!