Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2026, Vol. 46 Issue (1): 137-144    DOI: 10.11902/1005.4537.2025.286
Current Issue | Archive | Adv Search |
High Temperature Oxidation and Corrosion Behavior of 316L Stainless Steel Prepared by Selected Laser Melting Process
FENG Haoxuan1,2, WANG Fuli1,3, LI Jialin1, DU Yao1(), WEI Boxin1, ZHU Shenglong1
1.Department of Surface Engineering Materials Research, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Cite this article: 

FENG Haoxuan, WANG Fuli, LI Jialin, DU Yao, WEI Boxin, ZHU Shenglong. High Temperature Oxidation and Corrosion Behavior of 316L Stainless Steel Prepared by Selected Laser Melting Process. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 137-144.

Download:  HTML  PDF(10599KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The oxidation behavior in air and corrosion behavior beneath NaCl salt deposit film of selective laser melting prepared 316 stainless steel (SLM-316) and traditional cast 316 stainless steel (Cast-316) at 700 oC was comparatively studied. The results showed that the SLM-316 stainless steel exhibited superior high-temperature oxidation and corrosion resistance. After 200 h of oxidation, its weight gain was only 0.047 mg/cm2, and the formed oxide scale was uniform and compact, with a thickness of less than 1 μm; whereas the oxide scale of the Cast-316 stainless steel showed obvious zoning, with local thickness exceeding 10 μm and the corresponding weight gain reaching 0.083 mg/cm2. In the high-temperature corrosion environment with deposited solid NaCl, the two steels are suffered from corrosion but their corrosion degrees are different: SLM-316 stainless steel showed only a slight weight gain of 0.23 mg/cm2, while the Cast-316 stainless steel suffered severe corrosion accompanied by spallation of the corrosion products, resulting in a mass loss of -2.4 mg/cm2. The formed corrosion products of the two steels are composed mainly of Fe2O3 and NiCr2O4. It is proposed that the ultra-fine sub-grain structure introduced by the SLM process may promote the rapid formation of the Cr2O3 protective scale, significantly enhancing the high-temperature oxidation resistance and salt corrosion resistance of the 316 stainless steel.

Key words:  high temperature salt corrosion      high temperature oxidation      selective laser melting      316 stainless steel     
Received:  09 September 2025      32134.14.1005.4537.2025.286
ZTFLH:  TG174  

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.286     OR     https://www.jcscp.org/EN/Y2026/V46/I1/137

Fig.1  XRD patterns (a, b) and microstructures of as-prepared Cast-316 (c) and SLM-316 (d, e) stainless steels
Fig.2  Mass gain (a, b) and oxidation rate constants (c) of Cast-316 and SLM-316 stainless steels at 700 oC
Fig.3  XRD patterns of Cast-316 (a) and SLM-316 (b) stainless steels after oxidation for 200 h at 700 oC
Fig.4  Surface and cross-sectional morphologies of Cast-316 (a-c) and SLM-316 (d-f) stainless steels after oxidation for 200 h at 700 oC
Fig.5  Elements mapping results of Cast-316 stainless steel after oxidation for 200 h at 700 oC
Fig.6  Corrosion kinetic curves of Cast-316 and SLM-316 stainless steel at 700 oC with solid NaCl deposited
Fig.7  XRD patterns of Cast-316 and SLM-316 stainless steels after corrosion for 200 h at 700 oC with solid NaCl deposited
Fig.8  Surface morphologies of Cast-316 (a, b) and SLM-316 (c, d) stainless steels after corrosion for 200 h at 700 oC with solid NaCl deposited
[1] Großwendt F, Becker L, Röttger A, et al. Impact of the allowed compositional range of additively manufactured 316L stainless steel on processability and material properties [J]. Materials, 2021, 14: 4074
doi: 10.3390/ma14154074
[2] Jamalkhani M, Khademitab M, Dashtgerd I, et al. Hot isostatic pressing of differently sintered binder jetted 316L stainless steel: Microstructure evolution and mechanical properties [J]. Mater. Today Commun., 2024, 40: 109529
[3] Abu-Warda N, García-Rodríguez S, Torres B, et al. Effect of molten salts composition on the corrosion behavior of additively manufactured 316L stainless steel for concentrating solar power [J]. Metals, 2024, 14: 639
doi: 10.3390/met14060639
[4] Wu M, Ren Y J, Ma Z C, et al. High temperature oxidation behavior of F55 super duplex stainless steel at 800-1000 oC in 1.013 ×105 Pa O2 [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1332
吴 铭, 任延杰, 马灼春 等. F55双相不锈钢在800~1000 ℃纯氧气中的高温氧化行为 [J]. 中国腐蚀与防护学报, 2024, 44: 1332
[5] Chen P L, Zhao Y J, Li P Z, et al. High temperature oxidation and high temperature tensile properties of 316L stainless steel [J]. Trans. Mater. Heat Treat., 2022, 43(11): 103
陈珮琳, 赵艳君, 李平珍 等. 316L不锈钢高温氧化及高温拉伸性能 [J]. 材料热处理学报, 2024, 43(11): 103
[6] Hollander D A, Wirtz T, von Walter M, et al. Development of individual three-dimensional bone substitutes using “selective laser melting” [J]. Eur. J. Trauma, 2003, 29: 228
doi: 10.1007/s00068-003-1332-2
[7] Osakada K, Shiomi M. Flexible manufacturing of metallic products by selective laser melting of powder [J]. Int. J. Mach. Tools Manuf., 2006, 46: 1188
doi: 10.1016/j.ijmachtools.2006.01.024
[8] Wang H M, Zhang S Q, Wang T, et al. Progress on solidification grain morphology and microstructure control of laser additively manufactured large Titanium components [J]. J. Xihua Univ. (Nat. Sci. Ed.), 2018, 37(4): 9
王华明, 张述泉, 王 韬 等. 激光增材制造高性能大型钛合金构件凝固晶粒形态及显微组织控制研究进展 [J]. 西华大学学报(自然科学版), 2018, 37(4): 9
[9] DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components-Process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
doi: 10.1016/j.pmatsci.2017.10.001
[10] Sander G, Thomas S, Cruz V, et al. On the corrosion and metastable pitting characteristics of 316L stainless steel produced by selective laser melting [J]. J. Electrochem. Soc., 2017, 164: C250
doi: 10.1149/2.0551706jes
[11] Liu Y, Yang Y Q, Mai S Z, et al. Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder [J]. Mater. Des., 2015, 87: 797
doi: 10.1016/j.matdes.2015.08.086
[12] Laleh M, Hughes A E, Xu W, et al. Unanticipated drastic decline in pitting corrosion resistance of additively manufactured 316L stainless steel after high-temperature post-processing [J]. Corros. Sci., 2020, 165: 108412
doi: 10.1016/j.corsci.2019.108412
[13] Li J L, Chen L J, Wei B, et al. Corrosion characterization in SLM-manufactured and wrought 316 L Stainless Steel induced by Desulfovibrio desulfuricans [J]. Constr. Build. Mater., 2025, 489: 140602
doi: 10.1016/j.conbuildmat.2025.140602
[14] Yuan P P, Gu D D, Dai D H. Particulate migration behavior and its mechanism during selective laser melting of TiC reinforced Al matrix nanocomposites [J]. Mater. Des., 2015, 82: 46
doi: 10.1016/j.matdes.2015.05.041
[15] Wang X Q, Carter L N, Pang B, et al. Microstructure and yield strength of SLM-fabricated CM247LC Ni-Superalloy [J]. Acta Mater., 2017, 128: 87
doi: 10.1016/j.actamat.2017.02.007
[16] Park J M, Choe J, Kim J G, et al. Superior tensile properties of 1%C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting [J]. Mater. Res. Lett., 2019, 8: 1
doi: 10.1080/21663831.2019.1638844
[17] Li L, Chen Y, Huang A H, et al. A novel NiCoCrAlPt high-entropy alloy with superb oxidation resistance at 1200 oC [J]. Corros. Sci., 2024, 228: 111819
doi: 10.1016/j.corsci.2024.111819
[18] Li L. Study on oxidation behavior of 316L stainless steel in high temperature environment and fluid corrosion of oxide film [D]. Beijing: China University of Petroleum (Beijing), 2020
李 琳. 316L不锈钢在高温环境的氧化行为及氧化膜的冲刷腐蚀研究 [D]. 北京: 中国石油大学(北京), 2020
[19] Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility [J]. Nat. Mater., 2018, 17: 63
doi: 10.1038/nmat5021 pmid: 29115290
[20] Hao W X, Shi D, Zhao Z H, et al. Comparison of microstructure and properties between 316L plate and materials formed by selective laser melting [J]. MW Met. Form., 2025, (4): 142
郝维勋, 史 丹, 赵中赫 等. 316L板材与选区激光熔化成形材料的组织和性能对比 [J]. 金属加工(热加工), 2025, (4): 142
[21] Yin P, Hou L F, Du Y H, et al. NaCl induced corrosion of three austenitic stainless steels at high temperature [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 288
尹 璞, 侯利峰, 杜华云 等. 新型奥氏体不锈钢高温NaCl腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 288
[22] Liu X L, Ma H T, Wang L, et al. Thermal corrosion behavior of KCl coating on the surface of pre-oxidized Fe-Cr alloy [J]. Mater. Prot., 2009, 42(9): 12
刘晓亮, 马海涛, 王 来 等. Fe-Cr合金预氧化后涂覆KCl盐膜的热腐蚀行为 [J]. 材料保护, 2009, 42(9): 12
[23] Shi Z Y. Hot corrosion mechanism and protection of stainless steel in molten chloride salt [D]. Wuhan: Wuhan University of Science and Technology, 2024
石振宇. 不锈钢在氯化物熔盐中的热腐蚀机理及防护研究 [D]. 武汉: 武汉科技大学, 2024
[24] Lu Y, Chen B, Wang J W, et al. Corrosion behavior of Cr, Fe and Ni based superalloy in molten NaCl [J]. Rare Met. Mater. Eng., 2014, 43: 17
doi: 10.1016/S1875-5372(14)60044-8
[1] LI Kexuan, WANG Yipeng, LIAO Bokai. Comparative Study on Passive Behavior of Wire Arc Additive Manufactured, Selective Laser Melted, and Conventional TC4 Ti-alloys[J]. 中国腐蚀与防护学报, 2026, 46(1): 186-192.
[2] BAI Yingxiong, WANG Yanli, LI Xiangwei, WU Zefeng, ZHANG Shuyan. Effect of Heat Treatment on Hot Corrosion Behavior of Selective Laser Melted GH4099 Nickel-based Superalloy Beneath (75%Na2SO4 + 25%NaCl) Deposits in Air at 900 oC[J]. 中国腐蚀与防护学报, 2025, 45(6): 1709-1716.
[3] XU Xiwen, SHU Xiaoyong, CHEN Zhiqun, HE Hairui, DONG Shuhe, FANG Yuqing, PENG Xiao. Oxidation Behavior of CVD Aluminized Coatings on DD6 Single Crystal Ni-based Superalloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 148-154.
[4] FAN Chunhua, WU Qianlin, XUE Shan, GE Jialu. Effect of Cr- and Si-addition on Oxidation Behavior of N80 Carbon Steel for Gas Injection Wells in Fire-flooding Oil Field[J]. 中国腐蚀与防护学报, 2025, 45(1): 231-236.
[5] LI Kaiyang, ZHAI Yunlong, HU Xinyu, WU Hong, LIU Bin, XING Shaohua, HOU Jian, ZHANG Fan, ZHANG Naiqiang. Research Progress on High Temperature Corrosion of Eutectic High Entropy Alloys[J]. 中国腐蚀与防护学报, 2024, 44(6): 1377-1388.
[6] YI Shuo, ZHOU Shengxuan, YE Peng, DU Xiaojie, XU Zhenlin, HE Yizhu. Microstructure and Corrosion Resistance of Cu-containing Fe-Mn-Cr-Ni Medium-entropy Alloy Prepared by Selective Laser Melting[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[7] WU Ming, REN Yanjie, MA Zhuochun, ZHANG Sitian, CHEN Jian, NIU Yan. High Temperature Oxidation Behavior of F55 Super Duplex Stainless Steel at 800-1000oC in 1.013×105 Pa O2[J]. 中国腐蚀与防护学报, 2024, 44(5): 1332-1338.
[8] ZHANG Bangyan, WU Hongbin, HU Xuegang, DONG Jiajian, ZHENG Shijie, YIN Weiwei, ZHANG Fangyu, TIAN Lixi, LIU Guangming. High Temperature Oxidation Behavior of FeCrAl/La2Zr2O7 Composites Prepared by Mechanical Alloying and Spark Plasma Sintering[J]. 中国腐蚀与防护学报, 2024, 44(4): 965-971.
[9] FENG Kangkang, REN Yanjie, LV Yunlei, ZHOU Mengni, CHEN Jian, NIU Yan. Effect of Si Content on Oxidation Behavior of Quaternary Fe-20Ni-20Cr- ySi Alloys in Oxygen at 900oC[J]. 中国腐蚀与防护学报, 2024, 44(1): 100-106.
[10] WANG Shuang, WANG Zixing, CHENG Xiaonong, LUO Rui. Effect of Rare Earth La on High Temperature Oxidation of Cobalt-based Superalloy GH5188 at 1100oC[J]. 中国腐蚀与防护学报, 2024, 44(1): 221-228.
[11] SHANG Qiang, MAN Cheng, PANG Kun, CUI Zhongyu, DONG Chaofang, CUI Hongzhi. Mechanism of Post-heat Treatment on Intergranular Corrosion Behavior of SLM-316L Stainless Steel with Different Carbon Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.
[12] REN Yan, ZHANG Xintao, GAI Xin, XU Jingjun, ZHANG Wei, CHEN Yong, LI Meishuan. High Temperature Oxidation Behavior of Quaternary (Cr2/3Ti1/3)3AlC2 MAX Ceramic in Air and Steam[J]. 中国腐蚀与防护学报, 2023, 43(6): 1284-1292.
[13] LIU Huanhuan, LIU Guangming, LI Futian, MENG Lingqi, XIAHOU Junzhao, GU Jialei. Oxidation Behavior of TP439 Stainless Steel in Water Vapor at 800 ℃[J]. 中国腐蚀与防护学报, 2023, 43(2): 377-383.
[14] REN Yanjie, LV Yunlei, DAI Ting, GUO Xiaohui, CHEN Jian, ZHOU Libo, QIU Wei, NIU Yan. Oxidation Behavior of Ternary Alloys Co-20Ni-3Al and Co-20Ni-5Al in 105 Pa O2 Atmosphere at 800-1000 ℃[J]. 中国腐蚀与防护学报, 2022, 42(6): 995-1001.
[15] XIE Leipeng, CHEN Minghui, WANG Jinlong, WANG Fuhui. High Temperature Oxidation Behavior of Ultrafine Grained ODS Nickel-based Superalloy Prepared by Spark Plasma Sintering[J]. 中国腐蚀与防护学报, 2022, 42(5): 709-716.
No Suggested Reading articles found!