Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2026, Vol. 46 Issue (1): 261-272    DOI: 10.11902/1005.4537.2025.098
Current Issue | Archive | Adv Search |
Multiscale Computational Study of Corrosion Inhibition Mechanism for Five Cyclic Amino Acids Based on Density Functional Theory (DFT) and Molecular Dynamics (MD) Simulations
BAI Ruiyu1, HUANG Wei'an1,2(), JIA Jianghong3, ZHANG Yanming4, LIU Yunfeng5, WANG Zengbao1
1.School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
2.National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, China
3.Sinopec, Zhongyuan Oilfield Company, Engineering Technology Management Department, Puyang 457001, China
4.Petro China Changqing Oilfield Company Oil and Gas Process Research Institute, Xi'an 710018, China
5.Petro China Southwest Oil & Gasfield Company, Research Institute of Natural Gas Technology, Chengdu 610213, China
Cite this article: 

BAI Ruiyu, HUANG Wei'an, JIA Jianghong, ZHANG Yanming, LIU Yunfeng, WANG Zengbao. Multiscale Computational Study of Corrosion Inhibition Mechanism for Five Cyclic Amino Acids Based on Density Functional Theory (DFT) and Molecular Dynamics (MD) Simulations. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 261-272.

Download:  HTML  PDF(10554KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion inhibition performance and mechanisms of five cyclic amino acids, namely tryptophan, histidine, proline, phenylalanine, and tyrosine, for Fe in HCl solution were investigated by means of molecular dynamics (MD) simulations and density functional theory (DFT) calculations. The results demonstrate that all the five cyclic amino acids exhibit significant corrosion inhibition effect. Among others, tryptophan (Trp) exhibits the most outstanding inhibition performance, which may be attributed to the unique π-electron conjugation effect of its indole ring and the strong coordinating ability of its amino group. MD simulations reveal that Trp forms a dense adsorption film on the metal surface, with a significantly higher adsorption energy (-381.45 kJ/mol) rather than other amino acids (e.g., histidine: -307.11 kJ/mol). Its molecular orientation facilitates the construction of a hydrophobic barrier, effectively impeding the ingress of H+/Cl- ions. DFT analysis further elucidates that the highest occupied molecular orbital (HOMO) of Trp is localized on the indole ring and amino group, enabling strong chemical bonding with vacant d-orbitals of metal Fe via electron back-donation. Conversely, the lowest unoccupied molecular orbital (LUMO) is distributed over the indole ring and carboxyl group, enhancing its adsorption stability. Trp's global reactivity parameter (ΔN = 0.456) is considerably higher than that of other amino acids (e.g., proline ΔN = 0.325), indicating superior charge transfer capability. This results in a pronounced synergistic effect suppressing both anodic metal dissolution and cathodic hydrogen evolution. Consistent with the theoretical findings, electrochemical evaluation confirms that Trp also delivers the best corrosion inhibition performance.

Key words:  cyclic amino acid corrosion inhibitor      tryptophan      molecular dynamics simulation      DFT calculation      dense adsorption     
Received:  25 March 2025      32134.14.1005.4537.2025.098
ZTFLH:  TQ015.9  
Fund: National Natural Science Foundation of China(52374026);National Natural Science Foundation of China(51974351);Shandong Provincial Natural Science Foundation(ZR2024ME125)

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.098     OR     https://www.jcscp.org/EN/Y2026/V46/I1/261

Fig.1  Molecular structure of histidine (a), phenylalanine (b), proline (c), tryptophan (d) and tyrosine (e)
Fig.2  Geometrically optimized structures of histidine (a), phenylalanine (b), proline (c), tryptophan (d) and tyrosine (e)
Fig.3  HOMO (left), LUMO (middle) orbital and electrostatic potential (ESP) distribution of histidine (a), phenylalanine (b), proline (c), tryptophan (d) and tyrosine (e)
InhibitorsEHOMO / eVELUMO / eVΔE / eVI / eVA / eVμ / eVχ / eVΔN
Histidine-5.082-0.8764.2065.0820.8762.1032.9790.361
Phenylalanine-5.365-1.1134.2525.3651.1132.1263.2390.296
Proline-5.131-1.064.0715.1311.062.0353.0950.345
Tryptophan-4.586-0.9813.6054.5860.9811.8022.7830.476
Tyrosine-5.12-1.0274.0935.121.0272.0463.0730.378
Table 1  Related parameter values of quantum computing of cyclic amino acids
Fig.4  Fukui function index of histidine (a), phenylalanine (b), proline (c), tryptophan (d) and tyrosine (e)
Fig.5  Conformation before (left) and after (right) adsorption on Fe(110) surface of histidine (a), phenylalanine (b), proline (c), tryptophan (d) and tyrosine (e)
InhibitorsEads / kJ·mol-1Ebinding / kJ·mol-1
Histidine-307.11307.11
Phenylalanine-379.01379.01
Proline-288.16288.16
Tryptophan-381.45381.45
Tyrosine-366.40366.40
Table 2  Interaction adsorption energy and binding energy between cyclic amino acids and Fe(110) surface
Fig.6  Mean square displacement plots of H+ (a) and Cl- (b) diffusion in the blank H2O phase and adsorbed amino acid film phase
SolutionH+ / cm2·s-1Cl- / cm2·s-1
H2O2.87 × 10-52.19 × 10-6
Histidine2.78 × 10-62.67 × 10-7
Phenylalanine2.02 × 10-63.54 × 10-8
Proline1.39 × 10-69.15 × 10-9
Tryptophan5.67 × 10-71.77 × 10-9
Tyrosine6.46 × 10-72.52 × 10-9
Table 3  Diffusion coefficients of corrosive substances (H+, Cl-) in H2O phase and amino acid molecular membrane phase
Fig.7  DFT simulation error bar graph of amino acid molecules in HOMO (a) and LUMO (b)
Fig.8  MD simulation error bar chart of amino acid molecules on Fe(110) surface
Fig.9  Electrochemical results of N80 steel in 20%HCl solution with and without amino acids: (a) Nyquist plots, (b) Bode plots, (c) Bode phase diagram, (d) potentiodynamic polarization curves
Fig.10  Equivalent circuit diagram of EIS spectra
InhibitorsRs/ Ω·cm2Rp/ Ω·cm2CPE-T/ µF·cm-2CPE-PηE/ %
Blank4.00950.75233.810.82-
Histidine1.738108.4062.080.7953.18
Phenylalanine1.477202.6341.190.7574.95
Proline2.62990.7982.930.7444.10
Tryptophan1.668276.5436.800.5881.65
Tyrosine1.690133.9354.910.9062.11
Table 4  Impedance parameters of N80 steel containing different amino acids in 20%HCl
Inhibitorba / mV·dec-1bc / mV·dec-1I / mA·cm-2ηE / %
Blank94.455185.501.09-
Histidine96.44129.770.2661.35
Phenylalanine65.227259.740.1775.82
Proline99.185133.410.4955.32
Tryptophan96.886119.310.1783.93
Tyrosine67.825130.820.2973.15
Table 5  PDP parameters of N80 carbon steel without and with non-amino acids in 20%HCl
[1] Li H, Luo B, Tang Z B, et al. Research, development and performance evaluation of XAI-180, a new acid corrosion inhibitor with high temperature resistance [J]. Nat. Gas Ind., 2019, 39(9): 89
李 晖, 罗 斌, 唐祖兵 等. 新型耐高温酸化缓蚀剂XAI-180的研发与性能评价 [J]. 天然气工业, 2019, 39(9): 89
[2] Wang D L, Li Y M, Jiang L M, et al. Performance of two new surfactants as acidizing inhibitors for oil and gas fields [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 542
王鼎立, 李勇明, 蒋立明 等. 新型表面活性剂作为油气田酸化缓蚀剂的制备及其性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 542
doi: 10.11902/1005.4537.2020.124
[3] Yang H M. Role of organic and eco-friendly inhibitors on the corrosion mitigation of steel in acidic environments—A state-of-art review [J]. Molecules, 2021, 26: 3473
doi: 10.3390/molecules26113473
[4] Ovalle V J, Waegele M M. Understanding the impact of N-Arylpyridinium ions on the selectivity of CO2 reduction at the Cu/electrolyte interface [J]. J. Phys. Chem. C, 2019, 123: 24453
doi: 10.1021/acs.jpcc.9b08666
[5] Finšgar M, Jackson J. Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: A review [J]. Corros. Sci., 2014, 86: 17
doi: 10.1016/j.corsci.2014.04.044
[6] Li J B, Zhang L M, Hu Z H, et al. Applied research of Mannich reaction in synthesis of acidifying corrosion inhibitor [J]. Fine Spec. Chem., 2014, 22(7): 11
李建波, 张莉梅, 胡正海 等. Mannich反应在酸化缓蚀剂合成中的应用 [J]. 精细与专用化学品, 2014, 22(7): 11
[7] Zhang M, Cheng G, Fang Y, et al. Research status and development trend of inhibitors [J]. Technol. Dev. Chem. Ind., 2020, 49(4): 43
张 明, 程 刚, 方 勇 等. 缓蚀剂的研究现状及发展趋势 [J]. 化工技术与开发, 2020, 49(4): 43
[8] Mu X J, Li X H, Lei R, et al. Inhibitory action of coffee skin extract on corrosion of steel in trichloroacetic acid solution [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1465
穆显菊, 李向红, 雷 然 等. 咖啡果皮提取物对钢在三氯乙酸溶液中的缓蚀性能 [J]. 中国腐蚀与防护学报, 2024, 44: 1465
doi: 10.11902/1005.4537.2024.062
[9] Feng H X, Zhang C, Xu H D, et al. Application and research progress of chitosan in corrosion inhibitor [J]. New Chem. Mater., 2021, 49(7): 216
冯辉霞, 张 晨, 徐海东 等. 壳聚糖在缓蚀剂领域的应用研究进展 [J]. 化工新型材料, 2021, 49(7): 216
doi: 10.19817/j.cnki.issn 1006-3536.2021.07.048
[10] Long W J, Tang J, Luo Q L, et al. Corrosion inhibition performance of biomass-derived carbon dots on Q235 steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 807
龙武剑, 唐 杰, 罗启灵 等. 生物质碳点对Q235钢的缓蚀性能研究 [J]. 中国腐蚀与防护学报, 2024, 44: 807
doi: 10.11902/1005.4537.2023.233
[11] Deng Z H, Lei R, Zhang Z Y, et al. Corrosion inhibition of vetiver extract on steel in hydrochloric acid environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 173
邓志华, 雷 然, 张智勇 等. 香根草提取物对冷轧钢在盐酸溶液中的缓蚀作用 [J]. 中国腐蚀与防护学报, 2023, 43: 173
doi: 10.11902/1005.4537.2022.065
[12] Wang D L, Li Y M, Chang T, et al. Experimental and theoretical studies of chitosan derivatives as green corrosion inhibitor for oil and gas well acid acidizing [J]. Colloids Surf., 2021, 628A: 127308
[13] Kadhim M M, Alabboodi K O, Hachim S K, et al. Analysis of the protection of copper corrosion by using amino acid inhibitors [J]. J. Mol. Model., 2023, 29: 27
doi: 10.1007/s00894-022-05424-0
[14] Wang Y F, Wang J, Yang Z, et al. Synthesis and performance of a novel acidizing corrosion inhibitor for high temperature reservoirs [J]. Chem. Ind. Eng. Prog., 2024, 43: 5712
doi: 10.16085/j.issn.1000-6613.2023-1615
王业飞, 王 婧, 杨 震 等. 新型高温酸化缓蚀剂的制备及性能评价 [J]. 化工进展, 2024, 43: 5712
doi: 10.16085/j.issn.1000-6613.2023-1615
[15] Zhang L D, Gong M, Zheng X W, et al. Application of quantum chemistry method in the performance evaluation and mechanism study of corrosion inhibitors [J]. Corros. Prot., 2017, 38: 829
张龄丹, 龚 敏, 郑兴文 等. 量子化学方法在缓蚀剂性能评价和机理研究中的应用 [J]. 腐蚀与防护, 2017, 38: 829
[16] Feng Y, Zhao M J, Cui Q, et al. Research progress of molecular simulation technology in the development and application of chitosan functional materials [J]. Chem. Ind. Eng. Prog., 2022, 41: 4241
doi: 10.16085/j.issn.1000-6613.2021-2176
冯 颖, 赵孟杰, 崔 倩 等. 分子模拟技术在壳聚糖功能材料开发和应用中的研究进展 [J]. 化工进展, 2022, 41: 4241
[17] Peng S Y, Jiang Z N, Li Y R, et al. A new exceptional imidazoline derivative corrosion inhibitor for carbon steel in supercritical CO2 environment [J]. Corros. Sci., 2025, 245: 112663
doi: 10.1016/j.corsci.2024.112663
[18] Omer R A, Azeez Y H, Kareem R O, et al. Combined DFT and Monte Carlo simulation studies of potential corrosion inhibition properties of coumarin derivatives [J]. J. Mol. Model., 2024, 30: 288
doi: 10.1007/s00894-024-06090-0 pmid: 39073489
[19] Wang P J, Song Y H, Fan L, et al. Inhibition of Q235 steel in 1 mol/L HCl solution by a new efficient imidazolium Schiff base corrosion inhibitor [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 59
王鹏杰, 宋昱灏, 樊 林 等. 新型高效咪唑希夫碱缓蚀剂对Q235钢在1 mol/L HCl溶液中的缓蚀作用 [J]. 中国腐蚀与防护学报, 2024, 44: 59
[20] Liu W C, Wang P J, Tang Z J, et al. Mechanism analysis of highly effective imidazole-Schiff corrosion inhibitor on P110 in HCl solution [J]. Mater. Prot., 2025, 58(3): 87
刘文超, 王鹏杰, 汤梓杰 等. 高效咪唑-席夫缓蚀剂对P110在HCl溶液中的缓蚀机理分析 [J]. 材料保护, 2025, 58(3): 87
[21] Shi K, Ma F, Song R M, et al. Diffusion behavior of waste soybean oil rejuvenated bitumen based on molecular simulation [J]. Chem. Ind. Eng. Prog., 2024, 43: 6794
doi: 10.16085/j.issn.1000-6613.2023-1107
史 柯, 马 峰, 宋瑞萌 等. 基于分子模拟的废大豆油再生沥青扩散行为 [J]. 化工进展, 2024, 43: 6794
[22] Hu H H, Chen C F. Mechanism of temperature influence on adsorption of schiff base [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 786
胡慧慧, 陈长风. 温度影响席夫碱缓蚀剂吸附的机理研究 [J]. 中国腐蚀与防护学报, 2021, 41: 786
doi: 10.11902/1005.4537.2020.156
[23] Wen F S, Du Y X, Zhang H, et al. Evaluation of corrosion inhibition of a bis-imidazoline corrosion inhibitor [J]. Corros. Prot., 2019, 40: 92
温福山, 杜永霞, 张 涵 等. 双咪唑啉缓蚀剂的缓蚀性能评价 [J]. 腐蚀与防护, 2019, 40: 92
[24] Chauhan D S, Quraishi M A, Mazumder M A J, et al. Design and synthesis of a novel corrosion inhibitor embedded with Quaternary ammonium, amide and amine motifs for protection of carbon steel in 1 M HCl [J]. J. Mol. Liq., 2020, 317: 113917
doi: 10.1016/j.molliq.2020.113917
[25] Zhang Q H, Li Y Y, Lei Y, et al. Comparison of the synergistic inhibition mechanism of two eco-friendly amino acids combined corrosion inhibitors for carbon steel pipelines in oil and gas production [J]. Appl. Surf. Sci., 2022, 583: 152559
doi: 10.1016/j.apsusc.2022.152559
[26] Kumar A M, Rajesh T, Obot I B, et al. Water-soluble chitosan salt as ecofriendly corrosion inhibitor for N80 pipeline steel in artificial sea water: experimental and theoretical approach [J]. Int. J. Biol. Macromol., 2024, 254: 127697
doi: 10.1016/j.ijbiomac.2023.127697
[27] Zhou W B, Li M R, Zhou X, et al. Oil soluble mannich base corrosion inhibitor for corrosion inhibition of copper in transformer oil [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 453
周文彬, 李梦冉, 周 欣 等. 油溶性曼尼希碱缓蚀剂对紫铜在变压器油中的缓蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 453
doi: 10.11902/1005.4537.2023.077
[28] Wang J J, Cao Y H, Xue J H, et al. A comparative experimental and theoretical calculation study of CaAl-LDH modified with various aromatic inhibitors for corrosion protection study in epoxy coatings [J]. Corros. Sci., 2024, 231: 111994
doi: 10.1016/j.corsci.2024.111994
[29] Tan B C, Zhang S T, Li W P, et al. Food spices 2,5-dihydroxy-1,4-dithiane as an eco-friendly corrosion inhibitor for X70 steel in 0.5 mol/L H2SO4 solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 469
谭伯川, 张胜涛, 李文坡 等. 食用香料1,4-二硫-2,5-二醇环保型缓蚀剂对X70钢在0.5 mol/L H2SO4溶液中的缓蚀性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 469
doi: 10.11902/1005.4537.2020.100
[30] Fu J J, Li S N, Cao L H, et al. L-Tryptophan as green corrosion inhibitor for low carbon steel in hydrochloric acid solution [J]. J. Mater. Sci., 2010, 45: 979
doi: 10.1007/s10853-009-4028-0
[31] Wang X L, Li W, Tan B M, et al. Corrosion inhibition effect of benzimidazole and two derivatives on copper in alkaline environments: experimental and theoretical analyses [J]. J. Mol. Liq., 2023, 390: 122985
doi: 10.1016/j.molliq.2023.122985
[32] Dong H M, Li B Y, Ran B Y, et al. Corrosion inhibition mechanism of the eco-friendly corrosion inhibitor linagliptin on copper in sulfuric acid [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1031
董红梅, 李宝毅, 冉博元 等. 一种环保型缓蚀剂利拉利汀对紫铜在硫酸中的缓蚀机理研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1031
doi: 10.11902/1005.4537.2023.144
[33] Wang J, Wang Y F, Yang Z, et al. Synthesis of a novel fused heterocyclic Quaternary ammonium salt and its performance in ultra-low dosage as acidizing corrosion inhibitor [J]. J. Mol. Struct., 2024, 1303: 137571
doi: 10.1016/j.molstruc.2024.137571
[34] El Caid Z A, Left D B, Thoume A, et al. A comprehensive computational study of N-phenylacetamide derivatives as corrosion inhibitors for copper: Insights from DFT and molecular dynamics [J]. J. Bio- Tribo-Corros., 2023, 9: 83
[35] Rebaz A O, Karzan M A, Shalaw K S, et al. N, N-Bis (2,4-dihydroxy benzaldehyde) benzidine:Synthesis, characterization, DFT,and theoretical corrosion study [J]. J. Mol. Struct., 2024, 1300:137279
doi: 10.1016/j.molstruc.2023.137279
[36] Iravani D, Esmaeili N, Berisha A, et al. The Quaternary ammonium salts as corrosion inhibitors for X65 carbon steel under sour environment in NACE 1D182 solution: experimental and computational studies [J]. Colloids Surf., 2023, 656A: 130544
[37] Berdimurodov E, Kholikov A, Akbarov K, et al. Novel gossypol-indole modification as a green corrosion inhibitor for low-carbon steel in aggressive alkaline-saline solution [J]. Colloids Surf., 2022, 637A: 128207
[38] Tu S, Jiang J, Li P X, et al. Gleditsia sinensic extract as green corrosion inhibitor for N80 steel in 1 M HCl [J]. J. Mol. Struct., 2025, 1321: 139890
doi: 10.1016/j.molstruc.2024.139890
[39] Yang Q S, Huang C, Lian Y B, et al. Synthesis and multifunctional application of two novel carbon quantum dots as corrosion inhibitors [J]. Colloids Surf., 2024, 702A: 135165
[40] Mehta R K, Gupta S K, Yadav M. Studies on pyrimidine derivative as green corrosion inhibitor in acidic environment: electrochemical and computational approach [J]. J. Environ. Chem. Eng., 2022, 10: 108499
doi: 10.1016/j.jece.2022.108499
[41] Gupta S K, Mehta R K, Yadav M. Schiff bases as corrosion inhibitorson mild steel in acidic medium: gravimetric, electrochemical, surface morphological and computational studies [J]. J. Mol. Liq., 2022, 368: 120747
doi: 10.1016/j.molliq.2022.120747
[42] Palimi M J, Tang Y, Alvarez V, et al. Green corrosion inhibitors for drilling operation: new derivatives of fatty acid-based inhibitors in drilling fluids for 1018 carbon steel in CO2-saturated KCl environments [J]. Mater. Chem. Phys., 2022, 288: 126406
doi: 10.1016/j.matchemphys.2022.126406
[43] Ma X Y, Jiang X H, Xia S W, et al. New corrosion inhibitor acrylamide methyl ether for mild steel in 1 M HCl [J]. Appl. Surf. Sci., 2016, 371: 248
doi: 10.1016/j.apsusc.2016.02.212
[44] Han P, He Y, Chen C F, et al. Study on synergistic mechanism of inhibitor mixture based on electron transfer behavior [J]. Sci. Rep., 2016, 6: 33252
doi: 10.1038/srep33252 pmid: 27671332
[45] Wang G, Li W T, Wang X, et al. Experimental and theoretical investigations of three Mannich-base imidazoline quaternary ammonium salts as efficient inhibitors for Q235 steel in sulfuric acid [J]. Appl. Surf. Sci., 2023, 638: 157946
doi: 10.1016/j.apsusc.2023.157946
[1] XIA Yuan, LIAN Bingjie, CHENG Jia, LI Wen. Influence of Molecular Structure of Polyaspartic Ester Polyurea Amino Component on Microstructure of its Coating and Diffusion Behavior of Corrosive Media Within Coating: A Molecular Dynamics Simulation Study[J]. 中国腐蚀与防护学报, 2025, 45(4): 975-982.
[2] CHENG Xueyu, YE Huan, GUO Chenghao, LU Lixin, LI Weizhe. Molecular Dynamics Simulation of Diffusion Behavior of Benzotriazole and Sodium Benzoate in Volatile Corrosion Inhibitor Film[J]. 中国腐蚀与防护学报, 2024, 44(5): 1323-1331.
[3] CHEN Hao, FAN Zhibin, CHEN Zhijian, ZHOU Xuejie, ZHENG Penghua, WU Jun. Effect of Cl- and HSO3- on Corrosion Behavior of 439 Stainless Steel Used in Construction[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
[4] SUN Weisong, YU Sirong, GAO Song, YAO Xinkuan, XU Hailiang, QIAN Bing, WANG Bingzi. Molecular Dynamics Simulation of Water Molecule Diffusion in Graphene-reinforced Epoxy Resin Anticorrosive Coatings[J]. 中国腐蚀与防护学报, 2021, 41(3): 411-416.
[5] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[6] Zheng LIU, Haiying LI, Hao WANG, Yong ZHAO, Siwei XIE, Shufen ZHANG. Molecular Dynamics Simulation of Adsorption Behavior of Schiff Base Surfactants on Zn Surface in Aqueous Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[7] Jingmao ZHAO,Xiong ZHAO,Ruijing JIANG. Effect of Double Bonds in Hydrophobic Chains on Corrosion Inhibition Performance of Imidazoline Derivates in Dynamic H2S/CO2 Environment[J]. 中国腐蚀与防护学报, 2015, 35(6): 505-509.
[8] Tiejun SU, Yunbai LUO, Kehua LI, Fanxiu LI, Shiying DENG, Wei XI. Corrosion Inhibition Performance of Benzimidazole N-Mannich Base for Mild Steel in Hydrochloric Acid[J]. 中国腐蚀与防护学报, 2015, 35(5): 415-422.
[9] Lijuan FENG,Kangwen ZHAO,Huaiyu YANG,Nan TANG,Fuhui WANG,Tie SHANGGUAN. Synergistic Effect of Inhibitors of an Imidazoline Derivative and Tetraethylenepentamine on Corrosion Inhibition of Steel Rebar in an Artifial Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2015, 35(4): 297-304.
[10] WU Gang, GENG Yufeng, JIA Xiaolin, SUN Shuangqing, HU Songqing. THEORETICAL EVALUATION OF CORROSION INHIBITION PERFORMANCE OF ISOXAZOLIDINES DERIVATIVES[J]. 中国腐蚀与防护学报, 2012, 32(6): 513-519.
No Suggested Reading articles found!