Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2026, Vol. 46 Issue (1): 299-307    DOI: 10.11902/1005.4537.2025.081
Current Issue | Archive | Adv Search |
Galvanic Corrosion Behavior and Reaction Mechanism of Cu-Al Couple in Ethylene Glycol-Water Coolent
CHEN Simin, LIAN Longjiang, HUANG Yansong, ZENG Lanxiang, LEI Bing(), MENG Guozhe
School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519000, China
Cite this article: 

CHEN Simin, LIAN Longjiang, HUANG Yansong, ZENG Lanxiang, LEI Bing, MENG Guozhe. Galvanic Corrosion Behavior and Reaction Mechanism of Cu-Al Couple in Ethylene Glycol-Water Coolent. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 299-307.

Download:  HTML  PDF(10935KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In the circuit of liquid cooling system of electronic devices, there is a widespread problem of galvanic corrosion compatibility of dissimilar metal in ethylene glycol coolant, which seriously threatens the boundary integrity of liquid cooling system and the service safety of electronic devices. Based on this background, the galvanic effect and reaction mechanism between TP2 Cu-alloy and AA1060 Al-alloy in ethylene glycol-water coolent was assessed -by means of electrochemical corrosion testing and static immersion corrosion test. The results show that the corrosion potential difference of AA1060 Al-alloy as anode and TP2 Cu-alloy as cathode is 608.8 mV in ethylene glycol-water coolent, thus the risk of galvanic corrosion is high. At the initial stage of corrosion, the galvanic potential is above the pitting potential of AA1060 Al-alloy, while the spontaneous pitting of AA1060 Al-alloy occurs due to the action of strong anode polarization. The maximum pitting rate corresponding to the maximum pitting depth of AA1060 Al-alloy (188.24 μm) acquired by the immersion test is 2.29 mm/a, which is higher than the corrosion rate calculated by the galvanic current of 1.09 mm/a. This difference in corrosion rate is related to the reverse deposition of Cu2+ on AA1060 Al-alloy and the induced local micro-galvanic effect. In this process, due to the large resistance of ethylene glycol coolent and insufficient cathodic polarization of TP2, part of Cu2+ can still be dissolved through free-corrosion. The dissolved Cu2+ forms a simple Cu on the surface of AA1060 Al-alloy through displacement reaction, and forms a local micro-couple of Cu with Al matrix, which further promotes the local dissolution of AA1060 Al-alloy. Therefore, the corrosion rate acquied by electrochemical test is less than the actual corrosion rate.

Key words:  ethylene glycol refrigerant      galvanic corrosion      TP2 Cu-alloy      AA1060 Al-alloy     
Received:  11 March 2025      32134.14.1005.4537.2025.081
ZTFLH:  TG174  

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.081     OR     https://www.jcscp.org/EN/Y2026/V46/I1/299

MaterialFeGaVTiZnSnSiZnCuAl
TP2 Cu-alloy0.08----0.0060.0050.004Bal.-
AA1060 Al-alloy0.1930.0180.0180.0130.007-0.004-0.005Bal.
Table 1  Main chemical components of two test alloys (mass fraction / %)
Fig.1  Open circuit potentials of TP2 Cu-alloy and AA1060 Al-alloy in 55% ethylene glycol aqueous solution
Fig.2  Polarization curves of TP2 Cu-alloy and AA1060 Al-alloy in 55% ethylene glycol aqueous solution
MaterialEcorr / mV (vs. SCE)Icorr / μA·cm-2βa / mV·dec-1βc / mV·dec-1
AA1060 Al-alloy-650.20.11539.3-196.1
TP2 Cu-alloy40.40.45377.5-271.5
Table 2  Fitting parameters of polarization curves of TP2 Cu-alloy and AA1060 Al-alloy
Fig.3  Galvanic voltages and galvanic current densities of TP2-AA1060 alloy couple after immersion in 55% ethylene glycol aqueous solution for different time
RankCurrent density / μA·cm-2Corrosion gradeUsage suggestion
AIg ≤ 0.3No corrosionDirect contact
B0.3 < Ig ≤ 1.0Slight corrosionContact in certain condition
C1.0 < Ig ≤ 3.0Local corrosionNo contact, use after protection
D3.0 < Ig ≤ 10.0Critical corrosionNo contact, use after protection
EIg ≥ 10.0Severe corrosionNo contact, use after protection
Table 3  Evaluation of galvanic corrosion grade based on galvanic current density[30]
Corrosion gradeAnodic corrosion rate / mm·a-1
0< 2.29 × 10-4
12.54 × 10-4-2.29 × 10-3
22.54 × 10-3-2.29 × 10-2
32.54 × 10-2-1.26
41.27-2.53
52.54-25.39
6> 25.40
Table 4  Criteria for evaluating galvanic compatibility[31]
Fig.4  Polarization curves of TP2-AA1060 alloy couple in 55% ethylene glycol aqueous solution
Fig.5  Surface morphologies of TP2 Cu-alloy soaked in 55% ethylene glycol aqueous solution for 30 d: (a, b) uncoupled sample, (c, d) coupled sample
Fig.6  Surface morphologies of AA1060 Al-alloy soaked in 55% ethylene glycol aqueous solution for 30 d: (a, b) uncoupled sample, (c, d) coupled sample
Fig.7  Typical three-dimensional topography (a) and depth-cumulative probability distribution scatter plot (b) of pits on AA1060 Al-alloy
Corrosion gradeABC
Density / points·m-2Size / mm2Depth / mm
1≤ 2.5 × 103≤ 0.5≤ 0.4
22.5 × 103-1 × 1040.5-2.00.4-0.8
31 × 104-5 × 1042.0-8.00.8-1.6
45 × 104-1 × 1058.0-12.51.6-3.2
51 × 105-5 × 10512.5-24.53.2-6.4
Table 5  Grade evaluation of pitting based on pit density and pit size[32]
Fig.8  Corrosion mechanism of TP2-AA1060 alloy couple in 55% ethylene glycol aqueous solution
Fig.9  XPS full spectrum (a) and fine spectrum of Cu 2p (b) for coupled AA1060 Al-alloy immersed in 55% ethylene glycol aqueous solution for 30 d
[1] Yoon Y, Kim D R, Lee K S. Cooling performance and space efficiency improvement based on heat sink arrangement for power conversion electronics [J]. Appl. Therm. Eng., 2020, 164: 114458
doi: 10.1016/j.applthermaleng.2019.114458
[2] Cho K, Chang H, Jung Y, et al. Economic analysis of data center cooling strategies [J]. Sustain. Cities Soc., 2017, 31: 234
doi: 10.1016/j.scs.2017.03.008
[3] Peng Y H, Wang D H, Li X Y, et al. Cooling chip on PCB by embedded active microchannel heat sink [J]. Int. J. Heat Mass Transfer, 2022, 196: 123251
doi: 10.1016/j.ijheatmasstransfer.2022.123251
[4] Wu X L, Yang J L, Liu Y, et al. Investigations on heat dissipation performance and overall characteristics of two-phase liquid immersion cooling systems for data center [J]. Int. J. Heat Mass Transfer, 2025, 239: 126575
doi: 10.1016/j.ijheatmasstransfer.2024.126575
[5] Sun X Q, Han Z W, Li X M. Simulation study on cooling effect of two-phase liquid-immersion cabinet in data center [J]. Appl. Therm. Eng., 2022, 207: 118142
doi: 10.1016/j.applthermaleng.2022.118142
[6] Deng Z, Zhang S L, Ma K F, et al. Numerical and experimental study on cooling high power chips of data centers using double-side cooling module based on mini-channel heat sink [J]. Appl. Therm. Eng., 2023, 227: 120282
doi: 10.1016/j.applthermaleng.2023.120282
[7] Lu M Y, Zhang X L, Ji J, et al. Research progress on power battery cooling technology for electric vehicles [J]. J. Energy Storage, 2020, 27: 101155
doi: 10.1016/j.est.2019.101155
[8] Jiang X, Song X L, Zhang Q, et al. Effect of ethylene glycol on corrosion behavior of X65 mild steel in CO2-saturated 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 375
蒋 秀, 宋晓良, 张 全 等. 乙二醇对X65钢在CO2饱和的3.5%NaCl溶液中腐蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2017, 37: 375
[9] Santambrogio M, Perrucci G, Trueba M, et al. Effect of major degradation products of ethylene glycol aqueous solutions on steel corrosion [J]. Electrochim. Acta, 2016, 203: 439
doi: 10.1016/j.electacta.2016.03.144
[10] Yu Z Y, Song X N, Cheng Y J, et al. Effect of ethylene glycol on corrosion behavior of 6063 aluminum alloy in valve cooling system [J]. Corros. Prot., 2020, 41(4): 7
于志勇, 宋小宁, 程一杰 等. 乙二醇对阀冷系统6063铝合金的腐蚀影响 [J]. 腐蚀与防护, 2020, 41(4): 7
[11] Chakraborty S, Shukla D, Panigrahi P K. A review on coolant selection for thermal management of electronics and implementation of multiple-criteria decision-making approach [J]. Appl. Therm. Eng., 2024, 245: 122807
doi: 10.1016/j.applthermaleng.2024.122807
[12] Tao D B, Tong X F, Cao Y L. Progress in research of antifreezing/cooling fluids for automotives [J]. Mater. Prot., 2007, 40(6): 49
陶佃彬, 童秀凤, 曹云龙. 汽车防冻冷却液的研究进展 [J]. 材料保护, 2007, 40(6): 49
[13] Xin J Q, Wan C D, Zhu Z. Research status of heat transfer technology of liquid cooling plate of power battery [J]. Chin. J. Power Sources, 2024, 48: 1901
辛佳琦, 万长东, 朱 珠. 动力电池液冷板换热技术研究现状 [J]. 电源技术, 2024, 48: 1901
doi: 10.3969/j.issn.1002-087X.2024.10.005
[14] Ju Z H, Yu K Y, Li Q, et al. Study on graphite/aluminum alloy composite heat conducting plate for enhancing paraffin phase change heat storage [J]. J. Eng. Thermophys., 2023, 44: 3399
句子涵, 于坤洋, 李 强 等. 石墨/铝合金复合导热板强化石蜡相变蓄热研究 [J]. 工程热物理学报, 2023, 44: 3399
[15] Zhou W N, Dong K J, Sun Q, et al. Research progress of the liquid cold plate cooling technology for server electronic chips: A review [J]. Int. J. Energy Res., 2022, 46: 11574
doi: 10.1002/er.v46.9
[16] Zhou K. Study of copper-aluminum composite tube plate in thermal management technology of power battery [D]. Guangzhou: Guangdong University of Technology, 2021
周 科. 铜铝复合管板在动力电池热管理技术中的研究 [D]. 广州: 广东工业大学, 2021
[17] Liu Y H, Li Y Z, Yu D Z, et al. Research progress on corrosion failure behavior of printed circuit board in a service environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1145
刘元海, 李玉珠, 郁大照 等. 印制电路板在服役环境中的腐蚀失效行为研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 1145
doi: 10.11902/1005.4537.2023.377
[18] Zhao T L, Zhang L J, Qian J Y, et al. Corrosion behavior of Al-alloys 3A21, 5A05 and 6063 in low-conductive ethylene glycol coolant [J]. Corros. Sci. Prot. Technol., 2017, 29: 507
赵天亮, 张梁娟, 钱吉裕 等. 3A21、5A05和6063铝合金在低电导率乙二醇冷却液中的腐蚀行为 [J]. 腐蚀科学与防护技术, 2017, 29: 507
doi: 10.11903/1002.6495.2016.281
[19] Fan J L, Gong M, Hou X, et al. Corrosion behavior of 3A21 aluminum alloy in ethylene glycol-water solution [J]. Corros. Prot., 2014, 35: 1116
范金龙, 龚 敏, 侯 肖 等. 3A21铝合金在乙二醇水溶液中的腐蚀行为 [J]. 腐蚀与防护, 2014, 35: 1116
[20] Zhang G A, Xu L Y, Cheng Y F. Mechanistic aspects of electrochemical corrosion of aluminum alloy in ethylene glycol-water solution [J]. Electrochim. Acta, 2008, 53: 8245
doi: 10.1016/j.electacta.2008.06.043
[21] Jin X, Rao C Y, Gao L X, et al. Corrosion behavior of aluminum alloy in simulated cooling fluid composed of ethylene glycol and water [J]. Mater. Prot., 2011, 44(9): 15
金 星, 饶楚仪, 高立新 等. 铝合金在乙二醇-水模拟冷却液中的腐蚀行为 [J]. 材料保护, 2011, 44(9): 15
[22] Liu Y, Cheng Y F. Effects of coolant chemistry on corrosion of 3003 aluminum alloy in automotive cooling system [J]. Mater. Corros., 2010, 61: 574
[23] Zhan D D, Wang C, Qian J Y, et al. Effect of trace Cl- and Cu2+ ions on corrosion behavior of 3A21 Al-alloy in ethylene glycol coolant [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 383
战栋栋, 王 成, 钱吉裕 等. 痕量Cl-和Cu2+对3A21铝合金在乙二醇冷却液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 383
doi: 10.11902/1005.4537.2020.082
[24] Liu X, Gao F, Li S, et al. Effects of temperatures on corrosion of aluminium alloy 3A21 in glycol coolant [J]. Corros. Prot., 2025, 46(1): 53
刘 相, 高 峰, 李 森 等. 温度对乙二醇冷却液中铝合金3A21的腐蚀影响 [J]. 腐蚀与防护, 2025, 46(1): 53
[25] Wang X D. Study on flow-induced corrosion of typical metal materials in new coolant [D]. Beijing: Beijing University of Chemical Technology, 2020
王欣笛. 典型金属材料在新型冷却液中的流动腐蚀研究 [D]. 北京: 北京化工大学, 2020
[26] Cheng T C, Huang H L, Huang G L. Galvanic corrosion behavior between ADC12 aluminum alloy and copper in 3.5wt%NaCl solution [J]. J. Electroanal. Chem., 2022, 927: 116984
doi: 10.1016/j.jelechem.2022.116984
[27] Lei B, Hu S N, Lu Y F, et al. Galvanic corrosion behavior and electric insulation between B10 and a high strength steel in seawater environment for warship [J]. Corros. Prot., 2019, 40: 497
雷 冰, 胡胜楠, 卢云飞 等. 海水环境中B10合金与高强钢的电偶腐蚀行为与电绝缘防护技术 [J]. 腐蚀与防护, 2019, 40: 497
[28] Shi P F, Tang B, Zhou H B, et al. Galvanic corrosion compatibility of marine engineering dissimilar materials [J]. Ship Eng., 2022, 44: 154
石鹏飞, 唐 波, 周海波 等. 海洋工程装备异种材料的电偶腐蚀兼容性 [J]. 船舶工程, 2022, 44: 154
[29] Xing S H, Liu J Z, Bai S Y, et al. Influence of seawater flow speed on galvanic corrosion behavior of B10/B30 alloys coupling [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 391
邢少华, 刘近增, 白舒宇 等. 海水流速对B10/B30电偶腐蚀行为影响规律研究 [J]. 中国腐蚀与防护学报, 2023, 43: 391
doi: 10.11902/1005.4537.2022.109
[30] Ministry of Aviation Industry of PRC. Methods for the determination of current of different metal couples [S]. 1987
中华人民共和国航空工业部. 不同金属电偶电流测定方法 [S]. 1987
[31] Lu Y F, Guo Q, Hu L Y, et al. analysis of the galvanic corrosion effect of high-potential metal piping systems on hull steel structures [J]. Mater. Prot., 2025, 58(4): 122
卢云飞, 郭 倩, 胡凌越 等. 高电位金属管路系统对船体钢结构的电偶腐蚀影响分析 [J]. 材料保护, 2025, 58(4): 122
[32] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Corrosion of metals and alloys—Evaluation of pitting corrosion [S]. Beijing: China Standard Press, 2004
中华人民共和国国家质量监督检验检疫总局. 金属和合金的腐蚀 点蚀评定方法 [S]. 北京: 中国标准出版社, 2004
[33] Gao S L, Yu M, Liu J H, et al. Effects of cupric ions on the corrosion behavior of aluminum alloy 5A02 in ethylene glycol-water solution [J]. Int. J. Min. Met. Mater., 2017, 24: 423
doi: 10.1007/s12613-017-1423-4
[1] RUAN Zhibang, WEI Shixuan, WANG Shupeng, LV Zhengping, LI Gesheng, LI Yizhou. Inhibition Effect of Imidazoline Phosphate on Galvanic Corrosion of 7075 Al-alloy in Neutral NaCl Solution[J]. 中国腐蚀与防护学报, 2025, 45(6): 1734-1740.
[2] WANG Haiyang, LIN Chuanhongxin, GUO Liya. Micro-galvanic Corrosion Behavior of Paramagnetic La-Fe-Si Magnetocaloric Alloy Under Parallel Magnetic Fields[J]. 中国腐蚀与防护学报, 2025, 45(6): 1748-1754.
[3] CAI Ketao, JI Lei, ZHANG Zhen, FENG Qiang, DENG Weilin, LAN Guihong, HE Sha, ZHAO Zhanyong, BAI Peikang. Corrosion Behavior of Mg-Gd-Y-Zn-Zr Alloy in NaCl and Na2SO4 Solutions[J]. 中国腐蚀与防护学报, 2025, 45(5): 1289-1299.
[4] GU Songlun, ZHANG Fan, HUANG Guosheng, JIANG Dan, DONG Guojun. Corrosion Behavior of Cold Spray Cu-Ti Pseudo Alloy as Anti-fouling Material in Natural Seawater[J]. 中国腐蚀与防护学报, 2025, 45(5): 1309-1319.
[5] FANG Huanjie, ZHOU Peng, YU Jianhao, WANG Yongxin, YU Bo, PU Jibin. Galvanic Corrosion Behavior of Coupling Pairs of Ti80 Alloy with Various Marine Metallic Materials[J]. 中国腐蚀与防护学报, 2025, 45(4): 905-915.
[6] PANG Jie, LIU Xiangju, LIU Nazhen, HOU Baorong. Galvanic Corrosion of T2 Cu-alloy and Q235 Steel in Simulated Beishan Groundwater Environment[J]. 中国腐蚀与防护学报, 2024, 44(6): 1435-1442.
[7] YIN Jie, GAO Yonghao, YI Fang. Effect of Ag Micro-alloying on Microstructure and Corrosion Behavior of Mg-Zn-Ca Alloy[J]. 中国腐蚀与防护学报, 2024, 44(5): 1274-1284.
[8] QIAO Ze, LI Qingquan, LIU Xiaohang, LI Yizhou. Effect of Nitrate and Galvanic Couple on Crevice Corrosion Behavior of 7075-T651 Al-alloy in Neutral NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(4): 1047-1054.
[9] SUN Shuo, DAI Jiaming, SONG Yingwei, AI Caijiao. Corrosion Behavior of Extruded EW75 Mg-alloy in Shenyang Industrial Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[10] ZHANG Qinhao, ZHU Zejie, CAI Haoran, LI Xinran, MENG Xianze, LI Hao, WU Liankui, LUO Zhuangzhu, CAO Fahe. Performance of Pt/IrO x -pH Ultra-micro Electrochemical Sensor and its Application in Study of Galvanic Corrosion of Copper/Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1264-1272.
[11] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[12] XING Shaohua, LIU Zhongye, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei. Galvanic Corrosion Behavior of ZCuSn5Pb5Zn5/B10 Couple in Flowing Seawater[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[13] WANG Changgang, DANIEL Enobong Felix, LI Chao, DONG Junhua, YANG Hua, ZHANG Dongjiu. Corrosion Mechanisms of Carbon Steel- and Stainless Steel-bolt Fasteners in Marine Environments[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[14] NI Yumeng, YU Yingjie, YAN Hui, WANG Wei, LI Ying. Finite Element Study on Phase-selective Dissolution Mechanism of CuAl-NiC Abradable Seal Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[15] XING Shaohua, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei, MA Li. Influence of Seawater Flow Speed on Galvanic Corrosion Behavior of B10/B30 Alloys Coupling[J]. 中国腐蚀与防护学报, 2023, 43(2): 391-398.
No Suggested Reading articles found!