Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (6): 1748-1754    DOI: 10.11902/1005.4537.2025.076
Current Issue | Archive | Adv Search |
Micro-galvanic Corrosion Behavior of Paramagnetic La-Fe-Si Magnetocaloric Alloy Under Parallel Magnetic Fields
WANG Haiyang1, LIN Chuanhongxin1, GUO Liya1,2()
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2 Zhejiang Institute of Advanced Materials, Shanghai University, Jiaxing 314113, China
Cite this article: 

WANG Haiyang, LIN Chuanhongxin, GUO Liya. Micro-galvanic Corrosion Behavior of Paramagnetic La-Fe-Si Magnetocaloric Alloy Under Parallel Magnetic Fields. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1748-1754.

Download:  HTML  PDF(5034KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The galvanic corrosion behavior of paramagnetic La-Fe-Si-based magnetocaloric alloys in 0.1 mol/L NaClO4 solution under a parallel magnetic field was investigated via static immersion test, scanning electron microscopy and other techniques. The results indicate that the application of a parallel magnetic field increased the corrosion current density of the galvanic couple La-Fe and La-LaFe13.9Si1.4, decreased the corrosion current density of the galvanic couple La-LaFe13.9Si1.4. Electrochemical impedance spectroscopy and potentiodynamic polarization tests demonstrate that the parallel magnetic field can reduce the corrosion rate of La-LaFe13.9Si1.4. Immersion test results show that, compared with the absence of magnetic fields, the corrosion was less severe in the presence of a parallel magnetic field, with smaller and fewer corrosion pits and no obvious corrosion products. The above results were mainly ascribed to the stirring effects for the fluids caused by magnetohydrodynamic forces.

Key words:  magnetocaloric alloys      parallel magnetic field      micro-galvanic corrosion     
Received:  05 March 2025      32134.14.1005.4537.2025.076
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52201078);National Natural Science Foundation of China(42276214)
Corresponding Authors:  GUO Liya, E-mail: liya_guo@shu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.076     OR     https://www.jcscp.org/EN/Y2025/V45/I6/1748

Fig.1  Working principle diagrams of three-electrode electrochemical experiment (a) and zero resistance Ammeter experiment (b), and the definition of parallel magnetic field (c)
Fig.2  BSE-SEM images of LaFe13.9Si1.4 (a), Fe (b) and La (c), and EDS analysis of three phases marked in Fig.2a
Fig.3  XRD pattern of LaFe13.9Si1.3 magnetocaloric alloy containing La(Fe, Si)13, α-Fe and La-rich phases
Fig.4  Nyquist plots (a) and potentiodynamic polarization curves (b) of LaFe13.9Si1.4 alloy in 0.1 mol/L NaClO4 solution under 0 T and 1 T parallel magnetic fields and equivalent circuit models (c)
Magnectic fieldRsCPEox × 10-3noxRoxCPEct × 10-3nctRctRPW / Ω-1·cm-2·s0.5χ2 (10-3)
Ω·cm2Ω-1·cm-2·S nΩ·cm2Ω-1·cm-2·S nΩ·cm2Ω·cm2
0 T320.130.71810.240.78251926000.00122.8
1 T30-0.7936-0.9230763112-1.0
Table 1  Fitting data of EIS of LaFe13.9Si1.4 magnetocaloric alloy in 0.1 mol/L NaClO4 solutions
Fig.5  SEM images of specific local areas of two LaFe13.9Si1.4 samples before (a, c) and after (b, d) immersion in 0.1 mol/L NaClO4 solution for 1 h under 0 T (b) and 1 T (d) parallel magnetic fields
Fig.6  ZRA results of La-Fe (a), La-LaFe13.9Si1.4 (b), and Fe-LaFe13.9Si1.4 (c) galvanic couples after immersion in 0.1 mol/L NaClO4 solution for 1 h under 0 T and 1 T parallel magnetic fields
[1] Xue J N. Study on the microstructure and corrosion behavior of La(Fe,Si)13-based magnetocaloric materials [D]. Beijing: University of Science and Technology Beijing, 2020
(薛佳宁. LaFe13- x Si x 基合金的成相及腐蚀行为研究 [D]. 北京: 北京科技大学, 2020)
[2] Sari O, Bali M. From conventional to magnetic refrigerator technology [J]. Int. J. Refrig., 2014, 37: 8
[3] Ouyang Y, Zhang M X, Yan A R, et al. Plastically deformed La-Fe-Si: Microstructural evolution, magnetocaloric effect and anisotropic thermal conductivity [J]. Acta Mater., 2020, 187: 1
[4] Miao L Y, Lu X, Wei Z Y, et al. Enhanced mechanical strength in hot-rolled La-Fe-Si/Fe magnetocaloric composites by microstructure manipulation [J]. Acta Mater., 2023, 245: 118635
[5] Zhong X C, Wu Y C, Li Y X, et al. Transient liquid phase bonding assisted spark plasma sintering of La-Fe-Si magnetocaloric bulk materials [J]. J. Alloy. Compd., 2023, 965: 171419
[6] Hu S B. Study on several galvanic corrosion in simulating deep sea hydrostatic pressure condition [D]. Hefei: University of Science and Technology of China, 2020
(胡胜波. 深海高静水压模拟环境下几种电偶腐蚀行为研究 [D]. 合肥: 中国科学技术大学, 2020)
[7] Zhang E Y, Chen Y G, Tang Y B. Investigation on corrosion and galvanic corrosion in LaFe11.6Si1.4 alloy [J]. Mater. Chem. Phys., 2011, 127: 1
[8] Gebert A, Krautz M, Waske A. Exploring corrosion protection of La-Fe-Si magnetocaloric alloys by passivation [J]. Intermetallics, 2016, 75: 88
[9] Hinds G, Rhen F M F, Coey J M D. Magnetic field effects on the rest potential of ferromagnetic electrodes [J]. IEEE Trans. Magn., 2002, 38: 3216
[10] Hinds G, Spada F E, Coey J M D, et al. Magnetic field effects on copper electrolysis [J]. J. Phys. Chem., 2001, 105B: 9487
[11] Leventis N, Dass A. Demonstration of the elusive concentration-gradient paramagnetic force [J]. J. Amer. Chem. Soc., 2005, 127: 4988
[12] Coey J M D, Rhen F M F, Dunne P, et al. The magnetic concentration gradient force—is it real? [J]. J. Solid State Electrochem., 2007, 11: 711
[13] Sueptitz R, Tschulik K, Uhlemann M, et al. Magnetic field effects on the active dissolution of iron [J]. Electrochim. Acta, 2011, 56: 5866
[14] Li Q B, Su Y Z, Wu W, et al. Effect of self-generated magnetic field on the atmospheric corrosion behavior of copper [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 956
(李秋博, 苏一喆, 吴 伟 等. 自源性磁场对铜大气腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2025, 45: 956)
[15] Lu Z P, Huang D L, Yang W, et al. Effects of an applied magnetic field on the dissolution and passivation of iron in sulphuric acid [J]. Corros. Sci., 2003, 45: 2233
[16] Lü Z P, Chen J M. Effects of temperature and acid concentration on magnetic-induced hydrogen evolution overpotential of iron in hydrochloric acid solutions [J]. J. Chin. Soc. Corros. Prot., 1995, 15: 303
(吕战鹏, 陈俊明. 温度和酸浓度对铁在盐酸溶液中析氢磁致过电位的影响 [J]. 中国腐蚀与防护学报, 1995, 15: 303)
[17] Lü Z P, Huang D L, Yang W. Magnetic field induced variation of open circuit state of iron in chloride solutions [J]. Corros. Prot., 2002, 23: 185
(吕战鹏, 黄德伦, 杨 武. 磁场作用下铁在盐酸和氯化钠溶液中自腐蚀状态的变化 [J]. 腐蚀与防护, 2002, 23: 185)
[18] Ma Y X, Jiang D, Yang Y P, et al. Synthesis of magnetic targeted delivery microcapsules and its anti-corrosion self-healing behavior in epoxy resin coatings [J]. Corros. Commun., 2023, 10: 27
[19] Sueptitz R, Tschulik K, Uhlemann M, et al. Impact of magnetic field gradients on the free corrosion of iron [J]. Electrochim. Acta, 2010, 55: 5200
[20] Guo L Y, Lovell E, Wilson N, et al. The electrochemical behaviour of magnetocaloric alloys La(Fe,Mn,Si)13H x under magnetic field conditions [J]. Chem. Commun., 2019, 55: 3642
[21] Zhu C Y, Miao L Y, Xie J H, et al. Magnetic field effects on the corrosion behavior of magnetocaloric alloys LaFe13.9Si1.4 under paramagnetic states [J]. J. Alloy. Compd., 2023, 968: 171901
[22] Guo L Y, Zhu C Y, Wang H Y, et al. Magnetic field effects on the corrosion behavior of magnetocaloric alloys LaFe13.9Si1.4Hy under ferromagnetic states [J]. J Alloy. Compd., 2025, 1017: 179002
[23] El Boukili A, Tahiri N, Salmani E, et al. Magnetocaloric and cooling properties of the intermetallic compound AlFe2B2 in an AMR cycle system [J]. Intermetallics, 2019, 104: 84
[24] Gao L, Huang J H, Zhang Y D, et al. Development of rare earth based room temperature magnetic refrigerants and progress in magnetic refrigerators [J]. Chin. Rare Earths, 2023, 44(4): 91
(高 磊, 黄焦宏, 张英德 等. 稀土基室温磁工质的开发与磁制冷机的研究进展 [J]. 稀土, 2023, 44(4): 91)
[25] Hu J, Dong Z Q, Shen Y M, et al. Effect of excess lanthanum on corrosion and magnetocaloric property of LaFe11.5Si1.5 compounds [J]. J. Rare Earths, 2019, 37: 1116
[26] Cui M J, Ren S M, Zhao H C, et al. Polydopamine coated graphene oxide for anticorrosive reinforcement of water-borne epoxy coating [J]. Chem. Eng. J., 2018, 335: 255
[27] Chen X, Guo D C, Liu F G, et al. Effect of magnetic field on the electrochemical corrosion behavior of X70 pipeline steel [J]. Mater. Prot., 2024, 57(5): 33
(陈 旭, 郭大成, 刘付刚 等. 磁场对X70管线钢电化学腐蚀行为的影响 [J]. 材料保护, 2024, 57(5): 33)
[28] Dong X P, Geng X G, Yang L Y, et al. Study on the efficacy loss of the La0.75Mg0.25Ni3.47Co0.2Al0.03 hydrogen storage alloy electrode [J]. Rare Met. Cement. Carbides, 2011, 39(3): 25
(董小平, 耿晓光, 杨丽颖 等. La0.75Mg0.25Ni3.47Co0.2Al0.03储氢合金电极失效研究 [J]. 稀有金属与硬质合金, 2011, 39(3): 25)
[29] Zhu L Y, Chen J Q, Zhang X X, et al. Research progress of effect of magnetic field on metal corrosion [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1117
(朱立洋, 陈俊全, 张欣欣 等. 磁场对金属腐蚀影响的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 1117)
[30] Deng Z B, Hu X, Liu Y Y, et al. Effect of magnetic field on corrosion behavior of L360 pipeline steel and welded joints in 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 471
(邓志彬, 胡 枭, 刘应彦 等. 在役环境磁场对L360管线钢及焊接接头腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 471)
[31] Monzon L M A, Coey J M D. Magnetic fields in electrochemistry: The Kelvin force. a mini-review [J]. Electrochem. Commun., 2014, 42: 42
[32] Monzon L M A, Coey J M D. Magnetic fields in electrochemistry: The Lorentz force. A mini-review [J]. Electrochem. Commun., 2014, 42: 38
[33] Jackson J E, Lasseigne-Jackson A N, Olson D L, et al. The effect of magnetic fields on corrosion in pipeline steel [A]. Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2007) [C]. San Diego, 2007
[34] Chen S X, Fan D, Zhang S P. Influence of magnetic field on electrochemical corrosion behavior [J]. Mater. Prot., 2015, 48(9): 31
(陈散兴, 樊 栋, 张三平. 磁场对电化学腐蚀行为的影响 [J]. 材料保护, 2015, 48(9): 31)
[35] Wang X P, Zhao J J, Hu Y P, et al. Effects of the Lorentz force and the gradient magnetic force on the anodic dissolution of nickel in HNO3 + NaCl solution [J]. Electrochim. Acta, 2014, 117: 113
[36] Hu J, Fu S, Huo Y, et al. Effect of impurity phase on corrosion resistance and magnetic entropy change for LaFe11.3Co0.4Si1.3C0.15 magnetocaloric compound [J]. J Rare Earths, 2016, 34: 283
[37] Shinohara K, Hashimoto K, Aogaki R. Shift of the iron corrosion potential and acceleration of the mass transport of dissolved oxygen by the micro-MHD effect [J]. Chem. Lett., 2002, 31: 738
[38] Li T Y, Wei J, Chen N, et al. Corrosion performance of electrochemical sensors for atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 365
(李婷玉, 魏 洁, 陈 楠 等. 用于大气环境的电化学传感器的腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2024, 44: 365)
[1] GU Songlun, ZHANG Fan, HUANG Guosheng, JIANG Dan, DONG Guojun. Corrosion Behavior of Cold Spray Cu-Ti Pseudo Alloy as Anti-fouling Material in Natural Seawater[J]. 中国腐蚀与防护学报, 2025, 45(5): 1309-1319.
[2] YIN Jie, GAO Yonghao, YI Fang. Effect of Ag Micro-alloying on Microstructure and Corrosion Behavior of Mg-Zn-Ca Alloy[J]. 中国腐蚀与防护学报, 2024, 44(5): 1274-1284.
[3] SUN Shuo, DAI Jiaming, SONG Yingwei, AI Caijiao. Corrosion Behavior of Extruded EW75 Mg-alloy in Shenyang Industrial Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
No Suggested Reading articles found!