Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (4): 916-926    DOI: 10.11902/1005.4537.2024.301
Current Issue | Archive | Adv Search |
Corrosion Inhibition Performance of Nitrobarbituric Acid on Mg-alloys AZ31B and AZ91D in 3.5%NaCl Solution
ZHAI Yaru1, XIONG Jinping1, ZHAO Jingmao1,2()
1 College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
2 Beijing Key Laboratory of Materials Electrochemical Process and Technology, Beijing 100029, China
Cite this article: 

ZHAI Yaru, XIONG Jinping, ZHAO Jingmao. Corrosion Inhibition Performance of Nitrobarbituric Acid on Mg-alloys AZ31B and AZ91D in 3.5%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 916-926.

Download:  HTML  PDF(18890KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The inhibition performance of nitrobarbituric acid (NBA) on AZ31B and AZ91D alloys in 3.5%NaCl solution was comparatively evaluated using weight loss method, hydrogen evolution measurement, and electrochemical tests. The results revealed that NBA significantly could inhibit the corrosion of AZ31B in 3.5%NaCl solution, whereas it promoted the corrosionof AZ91D alloy. The inhibition mechanisms of NBA on the two Mg-alloys were elucidated through SEM-EDS, XRD, and XPS analyses. The acidic NBA reduced the pH value of 3.5%NaCl solution, initially dissolving Mg matrix of AZ31B alloy. For AZ31B alloy, the dissolution of the Mg matrix released Mg2+ ions, facilitating the formation of a dense Mg(OH)2 scale on the alloy surface, which effectively inhibited the further corrosion. Conversely, the inherent corrosion resistance of AZ91D hindered the rapid formation of a protective scale Mg(OH)2, allowing NBA to dissolve the substrate, thus promoting the corrosion of AZ91D alloy.

Key words:  nitrobarbituric acid      AZ31B      AZ91D      magnesium alloy      corrosion inhibitors      corrosion inhibition mechanism     
Received:  17 September 2024      32134.14.1005.4537.2024.301
ZTFLH:  TG174.42  
Fund: National Natural Science Foundation of China(52371046)
Corresponding Authors:  ZHAO Jingmao, E-mail: jingmaozhao@126.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.301     OR     https://www.jcscp.org/EN/Y2025/V45/I4/916

SolutionTemperature / ℃Time / hCorrosion rate / g·m-2·h-1ηw / %
3.5%NaCl25241.029-
481.198-
721.195-
35242.276-
481.907-
722.126-
50243.704-
485.596-
726.473-
3.5%NaCl + 1 g/L NBA25240.60341.4
480.31873.5
720.22281.4
35240.77366.0
480.46175.8
720.29086.4
50240.80578.3
480.57689.7
720.51592.0
Table 1  Corrosion rate and inhibition efficiency of AZ31B soaked in 3.5%NaCl solution with or without adding 1 g/L NBA at three temperatures
SolutionTemperature / ℃Time / hCorrosion rate / g·m-2·h-1ηw / %
3.5%NaCl25240.106-
480.062-
720.043-
35240.112-
480.078-
720.048-
50240.135-
480.088-
720.056-
3.5%NaCl + 1 g/L NBA25240.342-222.6
480.191-208.1
720.128-197.7
35240.365-225.9
480.220-182.1
720.158-229.2
50240.497-268.1
480.280-218.2
720.207-269.6
Table 2  Corrosion rate and inhibition efficiency of AZ91D soaked in 3.5%NaCl solution with or without adding 1 g/L NBA at three temperatures
Mg-alloySolutionTime / hPH / mm·a-1ηHev / %
AZ31B3.5%NaCl240.1705-
480.1474-
720.1950-
3.5%NaCl + 1 g/L NBA240.16254.7
480.115621.6
720.094551.5
AZ91D3.5%NaCl240.0050-
480.0041-
720.0033-
3.5%NaCl + 1 g/L NBA240.0194-288.0
480.0122-197.6
720.0094-184.8
Table 3  Hydrogen evolution results of AZ31B and AZ91D soaked in 3.5%NaCl solution with and without 1 g/L NBA
Fig.1  Potentiodynamic polarization curves of AZ31B and AZ91D Mg-alloys soaked for 24 h in 3.5%NaCl solution with/without 1 g/L NBA: (a) AZ31B, (b) AZ91D
Mg-alloySolutionEcorr / V vs.SCEIcorr / A·cm-2ηi / %
AZ31B3.5%NaCl-1.412.21 × 10-5-
3.5%NaCl + 1 g/L NBA-1.276.02 × 10-672.8
AZ91D3.5%NaCl-1.326.44 × 10-6-
3.5%NaCl + 1 g/L NBA-1.376.96 × 10-5-980.7
Table 4  Electrochemical parameters of potentiodynamic polarization curves of two Mg-alloys obtained by fitting using CView software
Fig.2  AZ31B Mg-alloy soaked in 3.5%NaCl solution with/without 1 g/L NBA for 24 h: (a) Nyquist plot, (b) Bode plot, and equivalent circuit of (c) blank, (d) 1 g/L NBA
Fig.3  AZ91D Mg-alloy soaked in 3.5%NaCl solution with/without 1 g/L NBA for 24 h: (a) Nyquist plot, (b) Bode plot, (c) equivalent circuit
Corrosion inhibitorRsΩ·cm2QfΩ-1·cm-2·s nnRfΩ·cm2RLΩ·cm2LH·cm2CdlΩ-1·cm-2·s nRctΩ·cm2χ2
Blank55.78---2.172 × 1023.114 × 1022.679 × 10-51.166 × 1021.210 × 10-3
NBA82.902.725 × 10-50.79011.582 × 103--6.743 × 10-62.686 × 1043.129 × 10-3
Table 5  Fitting parameters of AZ31B in 3.5%NaCl solution with or without 1 g/L NBA at 25 ℃
Corrosion inhibitorRsΩ·cm2QfΩ-1·cm-2·s nnRfΩ·cm2RLΩ·cm2LH·cm2CdlΩ-1·cm-2·s nRctΩ·cm2χ2
Blank35.097.653 × 10-60.93101.873 × 1037.935 × 1034.78 × 1055.420 × 10-42.879 × 1032.466 × 10-3
NBA37.093.482 × 10-50.83146.561 × 1022.166 × 10259.383.225 × 10-21.697 × 1022.416 × 10-3
Table 6  Fitting parameters of AZ91D in 3.5%NaCl solution with or without 1 g/L NBA at 25 ℃
Fig.4  XRD of surface corrosion products of AZ31B and AZ91D Mg-alloys soaked in 3.5%NaCl solution containing 1 g/L NBA at 25, 35 and 50 ℃ for 72 h, respectively. AZ31B: (a) 25 ℃, (b) 35 ℃, (c) 50 ℃; AZ91D: (d) 25 ℃, (e) 35 ℃, (f) 50 ℃
Fig.5  SEM images of AZ31B Mg-alloy soaked in 3.5%NaCl solution containing 1 g/L NBA for 24, 48 and 72 h, respectively: (a) 24 h, (b) 48 h and (c) 72 h at 25 ℃, (d) 24 h, (e) 48 h and (f) 72 h at 35 ℃, (g) 24 h, (h) 48 h and (i) 72 h at 50 ℃
Fig.6  EDS patterns of AZ31B Mg-alloy soaked in 3.5%NaCl solution containing 1 g/L NBA for 72 h: (a) 25 ℃, (b) 35 ℃, (c) 50 ℃
Fig.7  SEM images of AZ91D Mg-alloy soaked in 3.5%NaCl solution containing 1 g/L NBA for 24, 48 and 72 h, respectively: (a) 24 h, (b) 48 h and (c) 72 h at 25 ℃; (d) 24 h, (e) 48 h and (f) 72 h at 35 ℃; (g) 24 h, (h) 48 h and (i) 72 h at 50 ℃
Fig.8  EDS of AZ31B Mg-alloy soaked in 3.5%NaCl solution containing 1 g/L NBA for 72 h: (a) 25 ℃, (b) 35 ℃, (c) 50 ℃
Fig.9  SEM image of cross-sections of AZ31B Mg-alloy soaked in 3.5%NaCl solution containing 1 g/L NBA at 25 ℃ for 72 h
Fig.10  Wide-scan spectra of AZ31B (a) and AZ91D (b) Mg-alloys soaked in 3.5%NaCl solution with 1 g/L NBA at 50 ℃ for 72 h
Fig.11  High resolution spectra of AZ31B Mg-alloy soaked in 3.5%NaCl solution with 1 g/L NBA at 50 ℃ for 72 h: (a) C 1s, (b) Mg 1s, (c) O 1s, (d) N 1s
Time / h0369244872
AZ31B357891010
AZ91D3456777
Table 7  pH values of 3.5%NaCl solution containing 1 g/L NBA for different immersion time at 35 ℃ for AZ31B and AZ91D
[1] Hort N, Huang Y, Fechner D, et al. Magnesium alloys as implant materials-principles of property design for Mg-RE alloys [J]. Acta Biomater., 2010, 6: 1714
doi: 10.1016/j.actbio.2009.09.010 pmid: 19788945
[2] Umoren S A, Solomon M M, Madhankumar A, et al. Exploration of natural polymers for use as green corrosion inhibitors for AZ31 magnesium alloy in saline environment [J]. Carbohydr. Polym., 2020, 230: 115466
[3] Hu J Y. The investigation on inhibitors for magnesium and its alloy in NaCl solution [D]. Wuhan: Huazhong University of Science and Technology, 2012
(扈俊颖. NaCl介质中镁及镁合金缓蚀剂的研究 [D]. 武汉: 华中科技大学, 2012)
[4] Bai Z L, Qin B K. Research progress on the corrosion resistance of magnesium alloy [J]. Sci. Mosaic, 2017, (3): 168
(白志玲, 秦丙克. 镁合金腐蚀性能研究进展 [J]. 科技广场, 2017, (3): 168)
[5] Arslan Kaya A. A review on developments in magnesium alloys [J]. Front. Mater., 2020, 7: 198
[6] Fan B W, Bu Z Y, Ren Y X, et al. Research progress of magnesium and magnesium alloy inhibitors [J]. J. Henan Univ. (Nat. Sci.), 2018, 48: 596
(范保弯, 补朝阳, 任宇轩 等. 镁及镁合金缓蚀剂的研究进展 [J]. 河南大学学报(自然科学版), 2018, 48: 596)
[7] Gao H, Li Q, Chen F N, et al. Study of the corrosion inhibition effect of sodium silicate on AZ91D magnesium alloy [J]. Corros. Sci., 2011, 53: 1401
[8] Chen Y, Wang X D, Lai T, et al. Sodium dodecylbenzene sulfonate film absorbed on magnesium alloy surface: an electrochemical, SKPFM, and molecular dynamics study [J]. J. Mol. Liq., 2022, 357: 119095
[9] Wang X Y, Wang L Y, Ma X H, et al. Review on the preparation and corrosion-resistant application of metal-organic frameworks for magnesium alloy surface [J]. Surf. Technol., 2025, 54(5): 61
(王筱月, 王璐瑶, 马晓慧 等. 镁合金表面金属有机框架材料的制备及防腐应用研究综述 [J]. 表面技术, 2025, 54(5): 61)
[10] Kharitonov D S, Zimowska M, Ryl J, et al. Aqueous molybdate provides effective corrosion inhibition of WE43 magnesium alloy in sodium chloride solutions [J]. Corros. Sci., 2021, 190: 109664
[11] Li L J, Lei J L, Qu W J, et al. Inhibition of molybdate salt on dissolution of magnesium alloys in phosphoric acid [J]. Surf. Technol., 2007, 36(1): 16
(李凌杰, 雷惊雷, 屈卫娟 等. 磷酸介质中钼酸盐对镁合金的缓蚀作用 [J]. 表面技术, 2007, 36(1): 16)
[12] Prince L, Rousseau M A, Noirfalise X, et al. Inhibitive effect of sodium carbonate on corrosion of AZ31 magnesium alloy in NaCl solution [J]. Corros. Sci., 2021, 179: 109131
[13] Li Y, Lu X P, Wu K X, et al. Exploration the inhibition mechanism of sodium dodecyl sulfate on Mg alloy [J]. Corros. Sci., 2020, 168: 108559
[14] Xiao T, Dang N, Hou L F, et al. Inhibiting effect of sodium lignosulphonate on the corrosion of AZ31 magnesium alloy in NaCl solution [J]. Rare. Metal Mater. Eng., 2016, 45: 1600
(肖 涛, 党 宁, 侯利锋 等. 木质素磺酸钠对3.5%NaCl溶液中AZ31镁合金的缓蚀作用 [J]. 稀有金属材料与工程, 2016, 45: 1600)
[15] Yang G H. The study of inhibitors for AZ31 Mg alloy in sodium chloride solution [D]. Taiyuan: Taiyuan University of Technology, 2019
(杨国卉. NaCl溶液中AZ31镁合金缓蚀剂的研究 [D]. 太原: 太原理工大学, 2019)
[16] Zhou N. Study on corrosion inhibitors for AZ31 magnesium in NaCl solution [D]. Taiyuan: Taiyuan University of Technology, 2014
(周 娜. NaCl溶液中AZ31镁合金缓蚀剂的研究 [D]. 太原: 太原理工大学, 2014)
[17] Lamaka S V, Vaghefinazari B, Mei D, et al. Comprehensive screening of Mg corrosion inhibitors [J]. Corros. Sci., 2017, 128: 224
[18] Yadav A K, Ghule V D, Dharavath S. Thermally stable and insensitive energetic cocrystals comprising nitrobarbituric acid coformers [J]. Cryst. Growth. Des., 2023, 23: 2826
[19] Huang H L, Yang W L. Corrosion behavior of AZ91D magnesium alloy in distilled water [J]. Arab. J. Chem., 2020, 13: 6044
[20] Huang J F, Song G L. Research progress on corrosion testing and analysis of Mg-alloys [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 519
(黄居峰, 宋光铃. 镁合金腐蚀测试与分析研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 519)
doi: 10.11902/1005.4537.2023.185
[21] Cui Y N, Zhang T, Wang F H. New understanding on the mechanism of organic inhibitors for magnesium alloy [J]. Corros. Sci., 2022, 198: 110118
[22] Huang Z F, Yong Q W, Fang R, et al. Superhydrophobic and corrosion-resistant nickel-based composite coating on magnesium alloy [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 755
(黄志凤, 雍奇文, 房 蕊 等. AZ31镁合金表面超疏水耐腐蚀镍基复合涂层 [J]. 中国腐蚀与防护学报, 2023, 43: 755)
doi: 10.11902/1005.4537.2023.143
[23] Si W T, Zhang J H, Gao R J. Preparation of superamphiphobic surface on AZ31B magnesium alloy and its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 381
(司伟婷, 张吉昊, 高荣杰. AZ31B镁合金超双疏表面的制备及其耐蚀性研究 [J]. 中国腐蚀与防护学报, 2024, 44: 381)
doi: 10.11902/1005.4537.2023.097
[24] Gao X, Ma D Y, Huang Q S, et al. Pyrazole ionic liquid corrosion inhibitor for magnesium alloy: synthesis, performances and theoretical explore [J]. J. Mol. Liq., 2022, 353: 118769
[25] Wang L, Shinohara T, Zhang B P. XPS study of the surface chemistry on AZ31 and AZ91 magnesium alloys in dilute NaCl solution [J]. Appl. Surf. Sci., 2010, 256: 5807
[1] MU Xianju, LI Xianghong, LEI Ran, DENG Shuduan. Inhibitory Action of Coffee Skin Extract on Corrosion of Steel in Trichloroacetic Acid Solution[J]. 中国腐蚀与防护学报, 2024, 44(6): 1465-1475.
[2] SI Weiting, ZHANG Jihao, GAO Rongjie. Preparation of Superamphiphobic Surface on AZ31B Magnesium Alloy and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2024, 44(2): 381-388.
[3] LUO Chen, WU Xiong, SONG Hanqiang, SUN Zhihua, TANG Zhihui. Analysis of Application Requirements and Research Directions of Magnesium Alloys for Aircraft Engines Serving in Marine Environment[J]. 中国腐蚀与防护学报, 2023, 43(4): 787-794.
[4] LIU Zeqi, HE Xiaoxiao, QI Kang, HUANG Hualiang. Galvanic Corrosion Behavior for Galvanic Couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(6): 1016-1026.
[5] TIAN Weiping, GUO Liangshuai, WANG Yuhang, ZHOU Peng, ZHANG Tao. Effect of Cu-/Ag-activation on Growth and Corrosion Resistance of Electroless Plated Ni-film on Plasma Electrolytic Oxidation Coating[J]. 中国腐蚀与防护学报, 2022, 42(4): 573-582.
[6] SHAO Yinhua, WANG Jinlong, ZHANG Wei, ZHANG Jia, LI Ling, DU Xiran, CHEN Minghui, ZHU Shenglong, WANG Fuhui. High Temperature Oxidation Behavior of a Heat Resistant Magnesium Alloy Mg-14Gd-2.3Zn-Zr[J]. 中国腐蚀与防护学报, 2022, 42(1): 73-78.
[7] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[8] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[9] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[10] JIA Yizheng, WANG Baojie, ZHAO Mingjun, XU Daokui. Effect of Solid Solution Treatment on Corrosion and Hydrogen Evolution Behavior of an As-extruded Mg-Zn-Y-Nd Alloy in an Artificial Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[11] ZHANG Yao, GUO Chen, LIU Yanhui, HAO Meijuan, CHENG Shiming, CHENG Weili. Electrochemical Corrosion Behavior of Extruded Dilute Mg-2Sn-1Al-1Zn Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[12] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[13] OUYANG Yuejun,HU Ting,WANG Jiayin,XIE Zhihui. Electrochemical Deposition and Characterization of Layered Double Hydroxide Film on Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[14] Li LIU,Sirong YU. Effect of Gd Addition on Corrosion Behavior of AM60 Magnesium Alloy[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[15] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
No Suggested Reading articles found!