Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (4): 927-938    DOI: 10.11902/1005.4537.2024.285
Current Issue | Archive | Adv Search |
Effectiveness of Cathodic Protection on Rotating Test-piece of Q345B Steel in Artificial Seawater
ZHENG Zhongyi1, FENG Yixiang2, SONG Qinfeng1, GAN Tiansiyu3, YUAN Wang3, DONG Liang1()
1 School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China
2 Jiangsu Sineng Lubrucation Technology Co., Ltd., Changzhou 213376, China
3 Shenzhen 863 New Material Technology Co., Ltd., Shenzhen 518117, China
Cite this article: 

ZHENG Zhongyi, FENG Yixiang, SONG Qinfeng, GAN Tiansiyu, YUAN Wang, DONG Liang. Effectiveness of Cathodic Protection on Rotating Test-piece of Q345B Steel in Artificial Seawater. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 927-938.

Download:  HTML  PDF(2258KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effectiveness of cathodic protection on rotating equipment, such as drum filters is influenced by rotation parameters. Herein, a test set, on which test-pieces made of Q345B steel can be inserted, was designed to simulate the rotation circumstance of drum filters in an artificial seawater. Then, the effectiveness of cathodic protection on the test-pieces of Q345B steel was assessed according to the known orthogonal experiment procedure in terms of the varying parameters such as protection potential, duty cycle, and rotation frequency etc. The results show that as the rotation frequency increases from 0.010 r/d to 0.020 r/d, the degree of cathodic protection effectiveness first increases and then decreases, with the best protection effectiveness emerges at the frequency of 0.015 r/d, where the protection degree reaches up to 90.67%. This may be related to the flow rate and the morphology of corrosion products. As the duty cycle increases from 0.25 to 0.75, the degree of cathodic protection gradually increases. Regarding the protection potential, when the set protection potential negatively increases from -0.80 V to -1.25 V (vs. SSC), the degree of cathodic protection increases from 12.43% to 90.67%. This may be related to the proportion of cathodic polarization products CaCO3 and Mg(OH)2. When the proportion of CaCO3 is low and that of Mg(OH)2 is high, the Ca-containing deposition layer becomes tighter, resulting in better cathodic protection effectiveness.

Key words:  Q345B      drum filter      rotation conditions      cathodic protection      calcium deposition layer     
Received:  03 September 2024      32134.14.1005.4537.2024.285
ZTFLH:  TG172.5  
Fund: National Natural Science Foundation of China(51401017);Postgraduate Research & Practice Innovation Program of Jiangsu Province(SJCX24_1684)
Corresponding Authors:  DONG Liang, E-mail: dongliang@cczu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.285     OR     https://www.jcscp.org/EN/Y2025/V45/I4/927

Experimental group numberFrequency / r·d-1Duty cycleProtective potential / VTest cycle / h
10.0100.75-1.2524
20.0150.75-1.2524
30.0200.75-1.2524
40.0150.25-1.2524
50.0150.50-1.2524
60.0150.75-0.8024
70.0150.75-0.9524
80.0150.75-1.0524
90.0150.75-1.1524
100.0150.75-1.2548
110.0150.75-1.2572
Table 1  Experimental parameter settings
Fig.1  Corrosion rates of Q345B steel under different conditions: (a) frequency, (b) duty cycle, (c) protective potential, (d) test cycle
Fig.2  Protection degrees of cathodic protection for Q345B steel under different conditions
Fig.3  Macro morphologies of Q345B samples after orthogonal experiments without (a1-k1) and with (a2-k2) cathodic protection of 1-11 experimental group number (a-k)
Fig.4  XRD patterns of cathodically protected Q345B samples after tests under different conditions: (a) frequency, (b) duty cycle, (c) protective potential, (d) polarization
Fig.5  SEM surface morphologies of cathodically protected Q345B samples after tests under different conditions: (a) experimental group No.1, (b) experimental group No.2, (c) experimental group No.4, (d) experimental group No.6
Frequencies / r·d-1ElementLine typeMass fraction / %Mass fraction / % σAtomic fraction / %
0.010MgK-line system97.760.2898.79
Ca1.320.130.81
Fe0.930.250.41
0.015MgK-line system97.420.3198.63
Ca1.310.140.80
Fe1.270.280.56
0.020MgK-line system80.520.3687.56
Ca17.560.2611.39
Fe2.220.321.05
Table 2  EDS analysis results of cathodically protected Q345B samples after tests at different frequencies
Duty cyclesElementLine typeMass fraction / %Mass fraction / % σAtomic fraction / %
0.25MgK-line system61.030.3577.98
Ca1.600.111.24
Fe37.370.3520.79
0.50MgK-line system95.650.3297.72
Ca1.980.141.23
Fe2.370.291.05
0.75MgK-line system97.420.3198.63
Ca1.310.140.80
Fe1.270.280.56
Table 3  EDS analysis results of cathodically protected Q345B specimens under different duty cycles
Polarization potential / VElementLine typeMass fraction / %Mass fraction / % σAtomic fraction / %
-0.80MgK-line system0.360.050.82
Ca0.110.040.16
Fe99.530.0699.02
-0.95MgK-line system3.100.086.57
Ca4.320.085.57
Fe92.570.1287.56
-1.05MgK-line system0.200.050.46
Ca0.140.050.20
Fe99.660.0799.35
-1.15MgK-line system95.190.3297.58
Ca1.550.140.96
Fe3.270.301.46
-1.25MgK-line system97.420.3198.63
Ca1.310.140.80
Fe1.270.280.56
Table 4  EDS analysis results of cathodically protected Q345B specimens at different polarization potentials
Fig.6  Polarization current densities of standard experimental group of Q345B
Fig.7  Polarization current densities of Q345B specimens in seawater under the conditions of different influencing factors: (a) frequency, (b) duty cycle, (c) protection potential, (d) polarization cycle
Fig.8  Electrochemical impedance spectra of Q345B at different frequencies
Fig.9  Equivalent circuit model of Q345B steel under different conditions (a-c)
Frequency / r·d-1Rs / Ω·cm2Rt / Ω·cm2Rf / Ω·cm2CPE1-TCPE1-PCPE2-TCPE2-PW-RW-TW-P
Normal CP9.2271524803.41.368 × 10-30.743523.88 × 10-30.75733---
0.01020.79436.5-1.168 × 10-40.50827--145550.840.59921
0.01512.05120832062.167 × 10-30.569392.647 × 10-30.50941---
0.0204.19915.18-1.530 × 10-30.6165--690.318.660.47257
Table 5  Fitting results of electrochemical impedance spectra of Q345B steel at different frequencies
Fig.10  Electrochemical impedance spectra of Q345B steel under different duty cycle conditions
Duty cycleRs / Ω·cm2Rf / Ω·cm2CPE1-TCPE1-PRt / Ω·cm2CPE2-TCPE2-P
Normal CP9.227803.41.368 × 10-30.7435215243.88 × 10-30.75733
0.2510.38-5.549 × 10-30.5196786.9--
0.507.86869.561.940 × 10-30.4707229285.406 × 10-30.66481
0.7512.052062.167 × 10-30.56939120832.647 × 10-30.50941
Table 6  Fitting results of electrochemical impedance spectra under different duty cycles
Fig.11  Electrochemical impedance spectra of Q345B steel at different polarization potentials
Protective potential / VRs / Ω·cm2Rf / Ω·cm2CPE1-TCPE1-PRt / Ω·cm2CPE2-TCPE2-P
Normal CP9.227803.41.368 × 10-30.7435215243.88 × 10-30.75733
-0.808.69315.961.147 × 10-20.4684369.91.749 × 10-20.71615
-0.955.185-2.247 × 10-30.597771618--
-1.056.18815.882.135 × 10-20.42697988.51.095 × 10-20.66248
-1.158.340.262.305 × 10-30.5297615012.562 × 10-30.68743
-1.2512.052062.167 × 10-30.56939120832.647 × 10-30.50941
Table 7  Fitting results of EIS of Q345B at different polarization potentials
[1] Syromyatnikova A, Bolshakov A, Ivanov A, et al. The corrosion damage mechanisms of the gas pipelines in the Republic of Sakha (Yakutia) [J]. Procedia Struct. Integr., 2019, 20: 259
[2] Ma X W, Xue R J, Wang T T, et al. Comparison of corrosion resistance of Zr-based amorphous alloys and traditional alloys in seawater [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 949
马晓伟, 薛荣洁, 王涛涛 等. 锆基非晶合金与传统合金在海水中的耐腐蚀性能对比研究 [J]. 中国腐蚀与防护学报, 2024, 44: 949
doi: 10.11902/1005.4537.2023.297
[3] Sun W D. Evaluation method and application of effectiveness of sacrificial anode cathodic protection for offshore submarine oil pipeline [J]. Corros. Prot., 2024, 45: 93
孙伟栋. 近海海底管道阴极保护有效性的评估方法及应用 [J]. 腐蚀与防护, 2024, 45: 93
[4] Wang J, Meng J, Tang X, et al. Assessment of corrosion behavior of steel in deep ocean [J]. J. Chin. Soc. Corros. Prot., 2007, 27: 1
王 佳, 孟 洁, 唐 晓 等. 深海环境钢材腐蚀行为评价技术 [J]. 中国腐蚀与防护学报, 2007, 27: 1
[5] Ma H, Tian H Y, Liu Y X, et al. Corrosion behavior of S420 steel in different marine zones [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 635
麻 衡, 田会云, 刘宇茜 等. S420海工钢在不同海洋区带环境下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 635
[6] Zhou X B, Wang Q, Su H, et al. Low efficiency of cathodic protection in marine tidal corrosion of X80 steel in the presence of Pseudomonas sp. [J]. Bioelectrochemistry, 2024, 157: 108656
[7] Liu J G, Li Y T, Hou B R. Corrosion behavior of N80 steel under immersion and wet-dry cyclic condition [J]. Corros. Prot., 2012, 33: 925
刘建国, 李言涛, 侯保荣. N80钢模拟全浸区和干湿交替试样的腐蚀行为 [J]. 腐蚀与防护, 2012, 33: 925
[8] Liu J G, Li Y T, Hou B R. Progress in corrosion and protection of steels in marine splash zone [J]. Corros. Prot., 2012, 33: 833
刘建国, 李言涛, 侯保荣. 海洋浪溅区钢铁腐蚀与防护进展 [J]. 腐蚀与防护, 2012, 33: 833
[9] Huang Z F, Guo J Z, Liu G Y, et al. Effect of wet-dry cycling on performance of aluminum alloy sacrificial anodes in seawater [J]. Corros. Prot., 2016, 37: 160
黄振风, 郭建章, 刘广义 等. 海水干湿交替环境对铝合金牺牲阳极性能的影响 [J]. 腐蚀与防护, 2016, 37: 160
[10] Wang X, Xiong S H. Insufficient dissolution reason of sacrificial anode in a nuclear power plant [J]. Corros. Prot., 2021, 42: 98
王 鑫, 熊书华. 核电厂鼓型滤网牺牲阳极溶解不足的原因 [J]. 腐蚀与防护, 2021, 42: 98
[11] Zhao X H, Weng Y J, Li X Y. Effectiveness of cathodic protection by intermittent power supply [J]. Corros. Sci. Prot. Technol., 2003, 15: 196
赵雪红, 翁永基, 李相怡. 间歇供电阴极保护的效果研究 [J]. 腐蚀科学与防护技术, 2003, 15: 196
[12] Li P. Research on initial corrosion behavior of X60 pipeline steel in simulated tidal zone [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 338
李 平. X60管线钢在模拟潮差区初期腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 338
[13] Mu X, Wei J, Dong J H, et al. The effect of sacrificial anode on corrosion protection of Q235B steel in simulated tidal zone [J]. Acta Metall. Sin., 2014, 50: 1294
穆 鑫, 魏 洁, 董俊华 等. 牺牲阳极保护对Q235B钢在模拟海洋潮差区间腐蚀行为的影响 [J]. 金属学报, 2014, 50: 1294
[14] Zhang W L, Liu J R, Huang G Q. Corrosion behavior of E36 steel in artificial seawater and 3%NaCl solution [J]. Mater. Prot., 2009, 42: 27
张万灵, 刘建容, 黄桂桥. E36钢的海水腐蚀模拟试验研究 [J]. 材料保护, 2009, 42: 27
[15] Wang Y, Mu X, Dong J H, et al. Insight into atmospheric corrosion evolution of mild steel in a simulated coastal atmosphere [J]. J. Mater. Sci. Technol., 2021, 76: 41
doi: 10.1016/j.jmst.2020.11.021
[16] Law D W, Nicholls P, Christodoulou C. Residual protection of steel following suspension of Impressed Current Cathodic Protection system on a wharf structure [J]. Constr. Build. Mater., 2019, 210: 48
[17] Glass G K, Hassanein A M, Buenfeld N R. Cathodic protection afforded by an intermittent current applied to reinforced concrete [J]. Corros. Sci., 2001, 43: 1111
[18] Fan F Q, Song J W, Li C J, et al. Effect of flow velocity on cathodic protection of DH36 steel in seawater [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 550
范丰钦, 宋积文, 李成杰 等. 海水流速对DH36平台钢阴极保护的影响 [J]. 中国腐蚀与防护学报, 2014, 34: 550
doi: 10.11902/1005.4537.2013.183
[19] Wang C G, Daniel E F, Li C, et al. Corrosion mechanisms of carbon steel-and stainless steel-bolt fasteners in marine environments [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 737
王长罡, Daniel E F, 李 超 等. 海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究 [J]. 中国腐蚀与防护学报, 2023, 43: 737
doi: 10.11902/1005.4537.2023.151
[20] Barchiche C, Deslouis C, Gil O, et al. Role of sulphate ions on the formation of calcareous deposits on steel in artificial seawater; the formation of Green Rust compounds during cathodic protection [J]. Electrochim. Acta, 2009, 54: 3580
[21] Mu X, Wei J, Dong J H, et al. Electrochemical study on corrosion behaviors of mild steel in a simulated tidal zone [J]. Acta Metall. Sin., 2012, 48: 420
doi: 10.3724/SP.J.1037.2011.00666
穆 鑫, 魏 洁, 董俊华 等. 低碳钢在模拟海洋潮差区的腐蚀行为的电化学研究 [J]. 金属学报, 2012, 48: 420
[22] Yuan G W. Applications of electrochemical impedance spectroscopy to the research of electrodeposition-Part Ⅲ [J]. Electroplat. Finish., 2008, 27: 1
袁国伟. 电化学阻抗谱在电沉积研究中的应用(三) [J]. 电镀与涂饰, 2008, 27: 1
[23] Shao Y P, Yan A J, Li B, et al. Corrosion behavior of Q235 carbon steel for grounding grids in soil at Shanghai district [J]. Corros. Sci. Prot. Technol., 2015, 27: 333
邵玉佩, 闫爱军, 李 波 等. 接地极Q235碳钢材料在上海土壤环境中的腐蚀行为 [J]. 腐蚀科学与防护技术, 2015, 27: 333
doi: 10.11903/1002.6495.2014.304
[24] Dong L, Song Q F, Wu F Y, et al. Effect of environmental medium on corrosion behavior of X80 steel under dynamic DC interference [J]. Corros. Prot., 2021, 42: 1
董 亮, 宋沁峰, 吴昉赟 等. 环境介质对动态直流干扰下X80钢腐蚀行为的影响 [J]. 腐蚀与防护, 2021, 42: 1
[1] LI Xincheng, LI Zhaonan, WANG Haifeng, XU Yunze, WANG Mingyu, ZHEN Xingwei. Hydrogen Embrittlement Sensitivity for Welded Structural Parts of DH36 Marine Engineering Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 416-422.
[2] YU Jiahui, WANG Tongtong, GAO Yun, GAO Rongjie. Fabrication and Photocathodic Protection Performance of Bi2S3/TiO2 Nanocomposites for 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(4): 901-908.
[3] LIU Guo. Discussion on DC Voltage Gradient (DCVG) Measurement and %IR Calculation of Buried Coating Pipeline[J]. 中国腐蚀与防护学报, 2024, 44(2): 512-518.
[4] YE Mengying, YU Jiahui, WANG Tongtong, GAO Rongjie. Fabrication and Photocathodic Protection Performance of Bi2S3/CdS/TiO2 Nanocomposites for 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(2): 372-380.
[5] GU Yuhui, DONG Liang, SONG Qinfeng. Preparation of Micro Metal Oxide pH Electrode and Its Application in Corrosion and Protection[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[6] KOU Jie, REN Zhe. Research Progress of Regional Cathodic Protection Potential Distribution of Tank Floor Based on Numerical Calculation[J]. 中国腐蚀与防护学报, 2023, 43(4): 871-881.
[7] LI Changchun, HE Renbi, CHEN Yilong, HE Renyang, WANG Zhengxiao. Corrosion Behavior of X65 Steel by AC Interference and Cathodic Protection[J]. 中国腐蚀与防护学报, 2023, 43(1): 179-185.
[8] ZHANG Haibing, ZHANG Yihan, MA Li, XING Shaohua, DUAN Tigang, YAN Yonggui. Electrochemical Performance of Sacrificial Anodes in Alternating Depth and Shallowness of Seawater Environments[J]. 中国腐蚀与防护学报, 2022, 42(5): 867-872.
[9] DENG Jiali, YAN Maocheng, GAO Bowen, ZHANG Hui. Corrosion Behavior of Pipeline Steel Under High-speed Railway Dynamic AC Interference[J]. 中国腐蚀与防护学报, 2022, 42(1): 127-134.
[10] ZHUANG Dawei, DU Yanxia, CHEN Taotao, LU Danping. Research on Boundary Condition Inversion Method for Numerical Simulation of Regional Cathodic Protection and Its Application[J]. 中国腐蚀与防护学报, 2021, 41(3): 346-352.
[11] LI Chengyuan, CHEN Xu, HE Chuan, LI Hongjin, PAN Xin. Alternating Current Induced Corrosion of Buried Metal Pipeline: A Review[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[12] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[13] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[14] ZHAO Shuyan,TONG Xinhong,LIU Fuchun,WENG Jinyu,HAN En-Hou,LI Xiaohui,YANG Lin. Corrosion Resistance of Three Zinc-rich Epoxy Coatings[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[15] Guirong WANG,Yawei SHAO,Yanqiu WANG,Guozhe MENG,Bin LIU. Effect of Applied Cathodic Protection Potential on Cathodic Delamination of Damaged Epoxy Coating[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
No Suggested Reading articles found!