Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (4): 787-794    DOI: 10.11902/1005.4537.2023.162
Current Issue | Archive | Adv Search |
Analysis of Application Requirements and Research Directions of Magnesium Alloys for Aircraft Engines Serving in Marine Environment
LUO Chen1(), WU Xiong2, SONG Hanqiang2, SUN Zhihua1, TANG Zhihui1
1.AECC Key Laboratory on Advanced Corrosion and Protection for Aviation Materials, Beijing Institute of Aeronautical Materials, Beijing 100095, China
2.Naval Research Institute, Shanghai 200436, China
Download:  HTML  PDF(10182KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The analysis of airworthiness standards and general specifications shows that only guiding principles such as "use magnesium alloy as little as possible" have been issued at the present for the use of Mg-alloys in airplane engines at home and abroad, but the specific restrictions that should meet, especially the protective schemes that must be adopted in marine environments, are not been clearly specified yet. In view of the insufficient data related with the corrosion performance and protection technology of Mg-alloys for airplane engines, therefore, it is difficult to effectively support the selection of Mg-alloy materials and processes, as well as the assessment of their adaptability to marine environment. In response to the problem, it is suggested to establish an equivalent environmental spectrum for laboratory accelerated testing to facilitate the evaluation of typical Mg-alloy protection processes via laboratory accelerated test, by taking the harshest corrosion environment that Mg-alloy structures may encountered during service fully into account. Meanwhile, natural environmental corrosion testing should be carried out to determine the relevant corrosion protection performance. In addition, it is necessary to acquire how the corrosion degree of Mg-alloy substrate accumulates over time when the protective coating is damaged, then make a comparison with the corrosion performance of Al-alloys in the actual service condition of aircraft engines so that to put forward the evaluation criteria of Mg-alloys. Last but not least, the corrosion performance of the coupling structures of Mg-alloy with dissimilar materials should be assessed via accelerated laboratory tests in order to verify the environmental adaptability of such typical structures.

Key words:  magnesium alloy      airplane engine      restriction      corrosion      protective process     
Received:  01 June 2023      32134.14.1005.4537.2023.162
ZTFLH:  TD 123  
Corresponding Authors:  LUO Chen, E-mail: chen.luo.23@qq.com   

Cite this article: 

LUO Chen, WU Xiong, SONG Hanqiang, SUN Zhihua, TANG Zhihui. Analysis of Application Requirements and Research Directions of Magnesium Alloys for Aircraft Engines Serving in Marine Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 787-794.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.162     OR     https://www.jcscp.org/EN/Y2023/V43/I4/787

No.ComponentMaterialProtective schemePositionWorking conditionEngine
1Accessory gearbox inlet ductZM5Oxidation + 2 coats of primer + 1 coat of topcoatAccessory transmission componentsAirCertain turboprop engine
2Reducer front coverZM5Protective paintParts inside the airflow channelAirCertain turboprop engine
3Oil mist separator housingZM5Protective paintExternal parts of the engineAirCertain turboprop engine
4Front support housingZM2Strontium yellow composite paintEngine front channelAirCertain turbojet engine
5Auxiliary gearbox housing assemblyZM3Zn3ZrProtective paintEngine exteriorAir, lubricating oilCertain turbofan engine
Table 1  List of applications of in-service aeroengine magnesium alloy structures
Fig.1  Morphologyies of ZM5 magnesium alloy bare (a-d) and micro-arc oxidation (e-h) specimens after exposure in Wanning station: (a, e) original specimen, (b, f) 0.5 a, (c, g) 1 a, (d, h) 2 a
Fig.2  Macromorphologies of ZM5 magnesium alloy bare specimens after salt spray corrosion for 24 h (a1, a2), 48 h (b1, b2), 96 h (c1, c2) and 240 h (d1, d2)
Fig.3  Macromorphologies of ZM5 magnesium alloy micro-arc oxidation specimens after salt spray corrosion for 96 h (a1, a2), 240 h (b1, b2), 480 h (c1, c2), 720 h (d1, d2) and 1000 h (e1, e2)
No.StandardIssuing unitDate of issueClause numberContent
1MIL-HDBK-516B Airworthiness certification criteriaDepartment of Defense, USA2008A.4.2.19 Materials and ProcessesAll selected material systems and process methods must be verified for consistency with the environmental conditions and regulations used... Magnesium alloys are not suitable for saline environments and cannot be used without engineering reasons or approval
2CS-E Specification for engine certificationEuropean Union Aviation Safety Agency2003AMC E 130 FireproofMany magnesium alloys used in the manufacturing of engine components, such as magnesium chips or powder, are highly flammable when decomposed into very fine particles. Therefore, when using thin and fine magnesium alloys or magnesium alloys exposed to corrosion, friction, and high brushing speeds, the applicant should carefully evaluate the possibility of magnesium fire occurring in the entire system design and whether there are corresponding protective measures. If the assessment cannot rule out the possibility of magnesium fire, it should indicate that magnesium fire can be restricted within the engine area without causing hazardous effects
3JSSG-2007A Joint Service specification guide engines, aircraft, turbineDepartment of Defense, USA2007A.3.1.3 Materials, treatment, and partsMagnesium should be avoided in all parts of the engine. Magnesium alloys are restricted in use because they are highly susceptible to corrosion, especially in marine environments. A small pinhole crack in the protective coating can also cause corrosion beneath the residual material of the protective coating. Naval engines with magnesium alloy accessory casings have been damaged due to corrosion. Due to the use of incompatible materials between the front frame mounting holes and the tower shaft interface, air force engines equipped with magnesium alloy casings have suffered electrical corrosion damage. The gear gearbox using magnesium alloy propellers experienced severe corrosion problems, and later aluminum alloy was used to replace magnesium alloy
4GJB 241A-2010 General specification for aero turbojet and turbofan enginesPLA General Equipment Department, China20103.3.1 Materials, processes, and fastenersWhen using magnesium alloys, special approval from the user department is required
5GJB 242A-2018 General specification for aero turboprop and turboshaft engines2018
6GJB/Z 216-2004 Guide for the use of general specifications for aero turbojet and turbofan enginesPLA General Equipment Department, China20043.3.1.1.1Due to different environments, materials successfully used in air force engines may have problems when used in naval engines. Magnesium alloys are highly susceptible to corrosion, especially in marine environments, where a small pinhole in the protective layer can also cause corrosion. Both J79 and T76 engines abroad have experienced corrosion of magnesium alloy accessory casings or gear casings. Therefore, magnesium alloys should be used as appropriate with appropriate measures taken
7GJB 2635A-2015 Design and control requirements for corrosion protection of military aircraft20155.2 Material selectionAmong the metals used in aircraft structures, magnesium alloys have the worst corrosion resistance and are generally not suitable for structural design (especially for offshore aircraft and civil aircraft). But it can also be used in a good environment with a good protective system
8HB 7671-2000 Design requirements for corrosion prevention of aircraft structuresCommission of Science Technology and Industry for National Defense, PRC20006 Corrosion resistance and limit requirements of common materials for aircraft structures
Table 2  Comparison of magnesium alloy application requirement clauses in domestic and foreign airworthiness standards and general specifications
1 Hu M. Lubricating oil system failure analysis [A]. Proceedings of Su-27 Aircraft Technology Theory Promotion and Research (I) [C]. 2000: 25
胡 猛. 滑油系统故障分析 [A]. 苏二七型飞机技术理论深化研修论文汇编 (一) [C]. 2000: 25
2 Ding W J. Magnesium Alloy Science and Technology [M]. Beijing: Science Press, 2007: 365
丁文江. 镁合金科学与技术 [M]. 北京: 科学出版社, 2007: 365
3 Wang J W, Liu X H, Wang F C, et al. High performance superlight Mg-Li alloy used in aerospace [J]. Dual Use Technol. Prod., 2013, (6): 21
王军武, 刘旭贺, 王飞超 等. 航空航天用高性能超轻镁锂合金 [J]. 军民两用技术与产品, 2013, (6): 21
4 Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
崔中雨, 葛 峰, 王 昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403
doi: 10.11902/1005.4537.2021.165
5 Song G, StJohn D H. Corrosion of magnesium alloys in commercial engine coolants [J]. Mater. Corros., 2005, 56: 15
doi: 10.1002/(ISSN)1521-4176
6 Zhang P, Nie X, Northwood D O. Influence of coating thickness on the galvanic corrosion properties of Mg oxide in an engine coolant [J]. Surf. Coat. Technol., 2009, 203: 3271
doi: 10.1016/j.surfcoat.2009.04.012
7 Starostin M, Tamir S. New engine coolant for corrosion protection of magnesium alloys [J]. Mater. Corros., 2006, 57: 345
doi: 10.1002/(ISSN)1521-4176
8 Dai W, Wang J H, Luo S, et al. Fabrication of super-hydrophobic surface on AM60 Mg-alloy and its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 301
代卫丽, 王景行, 罗 帅 等. AM60镁合金超疏水表面制备及防腐蚀性能的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 301
doi: 10.11902/1005.4537.2021.088
9 Yang X Y, Yang Y T, Lu X P, et al. Research progress of corrosion inhibitor for Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 435
杨欣宇, 杨云天, 卢小鹏 等. 镁合金缓蚀剂研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 435
doi: 10.11902/1005.4537.2021.295
10 Zhou D M, Jiang L, Wang M T, et al. Effects of Ce(NO3)2 concentration and silicate sealing treatment on calcium phosphating film on surface of Mg-Zn-Y-Ca alloy for high speed railway corbel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 849
周殿买, 姜 磊, 王美婷 等. Ce(NO3)2浓度及硅酸盐封孔处理对高铁枕梁用Mg-Zn-Y-Ca合金表面钙系磷化膜的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 849
doi: 10.11902/1005.4537.2021.202
11 Wang X G, Gao K W, Yan L C, et al. Effect of Ce on corrosion resistance of films of ZnAlCe-layered double hydroxides on Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 335
王晓鸽, 高克玮, 颜鲁春 等. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究 [J]. 中国腐蚀与防护学报, 2021, 41: 335
doi: 10.11902/1005.4537.2020.068
12 Liu Y X, Xu A Y. Characterization of pitting corrosion behavior of AZ91 Mg-alloy without and with MAO coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1034
刘玉项, 徐安阳. AZ91镁合金和MAO涂层的点蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1034
doi: 10.11902/1005.4537.2021.320
13 Chen Z N, Yong X Y, Chen X C. Micro-defects in micro-arc oxidation coatings on Mg-alloys [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1
陈振宁, 雍兴跃, 陈晓春. 镁合金微弧氧化膜中微缺陷问题研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 1
doi: 10.11902/1005.4537.2021.012
14 Wei Z, Ma B J, Li L, et al. Effect of ultrasonic rolling pretreatment on corrosion resistance of micro-arc oxidation coating of Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 117
魏征, 马保吉, 李龙 等. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 117
doi: 10.11902/1005.4537.2020.035
15 Zheng L, Wang M T, Yu B Y. Research progress of cold spraying coating technology for Mg-alloy [J]. J. Chin. Soci. Corros. Prot., 2021, 41: 22
郑 黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 22
16 Velikiy V I, Yares’ko K I, Shalomeev V A, et al. Prospective magnesium alloys with elevated level of properties for the aircraft engine industry [J]. Met. Sci. Heat Treat., 2014, 55: 492
doi: 10.1007/s11041-014-9660-x
17 Wu G H, Chen Y S, Ding W J. Current research, application and future prospect of magnesium alloys in aerospace industry [J]. Manned Spaceflight, 2016, 22: 281
吴国华, 陈玉狮, 丁文江. 镁合金在航空航天领域研究应用现状与展望 [J]. 载人航天, 2016, 22: 281
18 Fei Y J. Application of magnesium alloys in the aerospace industry [J]. Adv. Mater. Ind., 2018, (12): 15
费有静. 镁合金在航空航天领域中的应用 [J]. 新材料产业, 2018, (12): 15
19 Zhu R X, Na J Y. Corrosion analysis on magnesium alloy component in Aero-engine lubricating oil system [A]. Procedings of 3rd National Aerospace Equipment Failure Analysis Conference [C]. Kunming, 2000: 148
朱绒霞, 那静彦. 航空发动机油油系统镁合金部件腐蚀原因分析 [A]. 全国第三届航空航天装备失效分析会议论文集 [C]. 昆明, 2000: 148
20 Huang Y S, Yu J H, Feng B D. Research on sand mould casting process for an aero-engine oil distributing sleeve [J]. New Technol. New Process, 2014, (5): 120
黄艳松, 余继华, 冯保东. 某航空发动机分油套筒砂型铸造工艺研究 [J]. 新技术新工艺, 2014, (5): 120
21 Liu Z Q, He X X, Qi K, et al. Galvanic corrosion behavior for galvanic couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1016
刘泽琪, 何潇潇, 祁 康 等. AZ91D镁合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1016
doi: 10.11902/1005.4537.2021.355
22 Du R X, Li Y H. Microbiological corrosion and protection of magnesium alloys of lubricate system of aero- engine [J]. Light Met., 2004, (12): 35
朱绒霞, 李亚会. 航空发动机滑油系统镁合金微生物腐蚀与防护 [J]. 轻金属, 2014, (12): 35
23 Tang Z F, Liu X K, Ren G M. Application requirements on magnesium alloy in Aero-engine worthiness standards [J]. Aeronaut. Stand. Qual., 2014, (6): 26
唐正府, 刘兴科, 任光明. 航空发动机适航标准中镁合金材料使用要求 [J]. 航空标准化与质量, 2014, (6): 26
[1] REN Huangwei, LIAO Bokai, CUI Linjing, XIANG Tengfei. Effect of Liquid Film Thickness on Corrosion Behavior of Solid Slippery Surface under Thin Liquid Film[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[2] QI Zhenhui, JIANG Tao, ZHAO Maojin, CAI Zhongqi, WANG Ruichen, SHANG Jie, YAO Jizheng, GE Yan. Research Progress on Coatings of Active Control of Microbiological Contamination for Aircraft Fuel System[J]. 中国腐蚀与防护学报, 2023, 43(4): 821-827.
[3] DING Li, ZOU Wenjie, ZHANG Xuejiao, CHEN Jun. Silicon-Zirconium Composite Conversion Film on ADC12 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[4] LI Qiang, LU Cheng, TANG Yinghao, TANG Jianfeng, LIU Bingcheng. Localized CO2 Corrosion of X70 Steel in Water Accumulation Zone of Wet Gas Pipelines[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[5] YUAN Lei, XIE Xin, CHEN Minghui, LI Fengjie, WANG Fuhui. Air Oxidation and NaCl Corrosion Behavior of 20 Steel Without and with Enamel Coating at 400 °C[J]. 中国腐蚀与防护学报, 2023, 43(4): 890-895.
[6] BAI Yihan, ZHANG Hang, ZHU Zejie, WANG Jiangying, CAO Fahe. Research Progress of Monitoring Ion Concentration Variation of Micro-areas in Corrosion Crevice Interior[J]. 中国腐蚀与防护学报, 2023, 43(4): 828-836.
[7] NI Yumeng, YU Yingjie, YAN Hui, WANG Wei, LI Ying. Finite Element Study on Phase-selective Dissolution Mechanism of CuAl-NiC Abradable Seal Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[8] WU Jiajia, XU Ming, WANG Peng, ZHANG Dun. Impact of Nitrate Addition on EH40 Steel Corrosion in Natural Seawater[J]. 中国腐蚀与防护学报, 2023, 43(4): 765-772.
[9] LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[10] ZOU Wenjie, DING Li, ZHANG Xuejiao, CHEN Jun. Epoxy/Organosiloxane Modified Cationic Acrylic Emulsion Composite Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[11] XIAO Meng, WANG Qinying, ZHANG Xingshou, XI Yuchen, BAI Shulin, DONG Lijin, ZHANG Jin, YANG Junjie. Effect of Laser Quenching on Microstructure, Corrosion and Wear Behavior of AISI 4130 Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[12] GUO Tao, HUANG Feng, HU Qian, LIU Jing. Oxidation Kinetics of 9Ni Steel Billet at High Temperature[J]. 中国腐蚀与防护学报, 2023, 43(4): 882-889.
[13] WU Duoli, WU Haotian, SUN Hui, SHI Jianjun, WEI Xinlong, ZHANG Chao. Research Status and Development of Laser Cladding High Temperature Protective Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 725-736.
[14] WU Jiahao, WU Liang, YAO Wenhui, YUAN Yuan, XIE Zhihui, WANG Jingfeng, PAN Fusheng. Properties of Layered Dihydroxyl Metal (MgAlLa) Oxide Composite Coatings on Different Micro-arc Oxidation Surfaces of Mg-Gd-Y-Zn-Mn Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[15] NI Ya, SHI Fangchang, QI Jiqiu. Effect of Ce on Microstructure and Corrosion Resistance of Zn-0.6Cu-0.3Ti Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 803-811.
No Suggested Reading articles found!