|
|
Analysis of Application Requirements and Research Directions of Magnesium Alloys for Aircraft Engines Serving in Marine Environment |
LUO Chen1( ), WU Xiong2, SONG Hanqiang2, SUN Zhihua1, TANG Zhihui1 |
1.AECC Key Laboratory on Advanced Corrosion and Protection for Aviation Materials, Beijing Institute of Aeronautical Materials, Beijing 100095, China 2.Naval Research Institute, Shanghai 200436, China |
|
|
Abstract The analysis of airworthiness standards and general specifications shows that only guiding principles such as "use magnesium alloy as little as possible" have been issued at the present for the use of Mg-alloys in airplane engines at home and abroad, but the specific restrictions that should meet, especially the protective schemes that must be adopted in marine environments, are not been clearly specified yet. In view of the insufficient data related with the corrosion performance and protection technology of Mg-alloys for airplane engines, therefore, it is difficult to effectively support the selection of Mg-alloy materials and processes, as well as the assessment of their adaptability to marine environment. In response to the problem, it is suggested to establish an equivalent environmental spectrum for laboratory accelerated testing to facilitate the evaluation of typical Mg-alloy protection processes via laboratory accelerated test, by taking the harshest corrosion environment that Mg-alloy structures may encountered during service fully into account. Meanwhile, natural environmental corrosion testing should be carried out to determine the relevant corrosion protection performance. In addition, it is necessary to acquire how the corrosion degree of Mg-alloy substrate accumulates over time when the protective coating is damaged, then make a comparison with the corrosion performance of Al-alloys in the actual service condition of aircraft engines so that to put forward the evaluation criteria of Mg-alloys. Last but not least, the corrosion performance of the coupling structures of Mg-alloy with dissimilar materials should be assessed via accelerated laboratory tests in order to verify the environmental adaptability of such typical structures.
|
Received: 01 June 2023
32134.14.1005.4537.2023.162
|
|
Corresponding Authors:
LUO Chen, E-mail: chen.luo.23@qq.com
|
1 |
Hu M. Lubricating oil system failure analysis [A]. Proceedings of Su-27 Aircraft Technology Theory Promotion and Research (I) [C]. 2000: 25
|
|
胡 猛. 滑油系统故障分析 [A]. 苏二七型飞机技术理论深化研修论文汇编 (一) [C]. 2000: 25
|
2 |
Ding W J. Magnesium Alloy Science and Technology [M]. Beijing: Science Press, 2007: 365
|
|
丁文江. 镁合金科学与技术 [M]. 北京: 科学出版社, 2007: 365
|
3 |
Wang J W, Liu X H, Wang F C, et al. High performance superlight Mg-Li alloy used in aerospace [J]. Dual Use Technol. Prod., 2013, (6): 21
|
|
王军武, 刘旭贺, 王飞超 等. 航空航天用高性能超轻镁锂合金 [J]. 军民两用技术与产品, 2013, (6): 21
|
4 |
Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
|
|
崔中雨, 葛 峰, 王 昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403
doi: 10.11902/1005.4537.2021.165
|
5 |
Song G, StJohn D H. Corrosion of magnesium alloys in commercial engine coolants [J]. Mater. Corros., 2005, 56: 15
doi: 10.1002/(ISSN)1521-4176
|
6 |
Zhang P, Nie X, Northwood D O. Influence of coating thickness on the galvanic corrosion properties of Mg oxide in an engine coolant [J]. Surf. Coat. Technol., 2009, 203: 3271
doi: 10.1016/j.surfcoat.2009.04.012
|
7 |
Starostin M, Tamir S. New engine coolant for corrosion protection of magnesium alloys [J]. Mater. Corros., 2006, 57: 345
doi: 10.1002/(ISSN)1521-4176
|
8 |
Dai W, Wang J H, Luo S, et al. Fabrication of super-hydrophobic surface on AM60 Mg-alloy and its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 301
|
|
代卫丽, 王景行, 罗 帅 等. AM60镁合金超疏水表面制备及防腐蚀性能的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 301
doi: 10.11902/1005.4537.2021.088
|
9 |
Yang X Y, Yang Y T, Lu X P, et al. Research progress of corrosion inhibitor for Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 435
|
|
杨欣宇, 杨云天, 卢小鹏 等. 镁合金缓蚀剂研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 435
doi: 10.11902/1005.4537.2021.295
|
10 |
Zhou D M, Jiang L, Wang M T, et al. Effects of Ce(NO3)2 concentration and silicate sealing treatment on calcium phosphating film on surface of Mg-Zn-Y-Ca alloy for high speed railway corbel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 849
|
|
周殿买, 姜 磊, 王美婷 等. Ce(NO3)2浓度及硅酸盐封孔处理对高铁枕梁用Mg-Zn-Y-Ca合金表面钙系磷化膜的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 849
doi: 10.11902/1005.4537.2021.202
|
11 |
Wang X G, Gao K W, Yan L C, et al. Effect of Ce on corrosion resistance of films of ZnAlCe-layered double hydroxides on Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 335
|
|
王晓鸽, 高克玮, 颜鲁春 等. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究 [J]. 中国腐蚀与防护学报, 2021, 41: 335
doi: 10.11902/1005.4537.2020.068
|
12 |
Liu Y X, Xu A Y. Characterization of pitting corrosion behavior of AZ91 Mg-alloy without and with MAO coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1034
|
|
刘玉项, 徐安阳. AZ91镁合金和MAO涂层的点蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1034
doi: 10.11902/1005.4537.2021.320
|
13 |
Chen Z N, Yong X Y, Chen X C. Micro-defects in micro-arc oxidation coatings on Mg-alloys [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1
|
|
陈振宁, 雍兴跃, 陈晓春. 镁合金微弧氧化膜中微缺陷问题研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 1
doi: 10.11902/1005.4537.2021.012
|
14 |
Wei Z, Ma B J, Li L, et al. Effect of ultrasonic rolling pretreatment on corrosion resistance of micro-arc oxidation coating of Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 117
|
|
魏征, 马保吉, 李龙 等. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 117
doi: 10.11902/1005.4537.2020.035
|
15 |
Zheng L, Wang M T, Yu B Y. Research progress of cold spraying coating technology for Mg-alloy [J]. J. Chin. Soci. Corros. Prot., 2021, 41: 22
|
|
郑 黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 22
|
16 |
Velikiy V I, Yares’ko K I, Shalomeev V A, et al. Prospective magnesium alloys with elevated level of properties for the aircraft engine industry [J]. Met. Sci. Heat Treat., 2014, 55: 492
doi: 10.1007/s11041-014-9660-x
|
17 |
Wu G H, Chen Y S, Ding W J. Current research, application and future prospect of magnesium alloys in aerospace industry [J]. Manned Spaceflight, 2016, 22: 281
|
|
吴国华, 陈玉狮, 丁文江. 镁合金在航空航天领域研究应用现状与展望 [J]. 载人航天, 2016, 22: 281
|
18 |
Fei Y J. Application of magnesium alloys in the aerospace industry [J]. Adv. Mater. Ind., 2018, (12): 15
|
|
费有静. 镁合金在航空航天领域中的应用 [J]. 新材料产业, 2018, (12): 15
|
19 |
Zhu R X, Na J Y. Corrosion analysis on magnesium alloy component in Aero-engine lubricating oil system [A]. Procedings of 3rd National Aerospace Equipment Failure Analysis Conference [C]. Kunming, 2000: 148
|
|
朱绒霞, 那静彦. 航空发动机油油系统镁合金部件腐蚀原因分析 [A]. 全国第三届航空航天装备失效分析会议论文集 [C]. 昆明, 2000: 148
|
20 |
Huang Y S, Yu J H, Feng B D. Research on sand mould casting process for an aero-engine oil distributing sleeve [J]. New Technol. New Process, 2014, (5): 120
|
|
黄艳松, 余继华, 冯保东. 某航空发动机分油套筒砂型铸造工艺研究 [J]. 新技术新工艺, 2014, (5): 120
|
21 |
Liu Z Q, He X X, Qi K, et al. Galvanic corrosion behavior for galvanic couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1016
|
|
刘泽琪, 何潇潇, 祁 康 等. AZ91D镁合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1016
doi: 10.11902/1005.4537.2021.355
|
22 |
Du R X, Li Y H. Microbiological corrosion and protection of magnesium alloys of lubricate system of aero- engine [J]. Light Met., 2004, (12): 35
|
|
朱绒霞, 李亚会. 航空发动机滑油系统镁合金微生物腐蚀与防护 [J]. 轻金属, 2014, (12): 35
|
23 |
Tang Z F, Liu X K, Ren G M. Application requirements on magnesium alloy in Aero-engine worthiness standards [J]. Aeronaut. Stand. Qual., 2014, (6): 26
|
|
唐正府, 刘兴科, 任光明. 航空发动机适航标准中镁合金材料使用要求 [J]. 航空标准化与质量, 2014, (6): 26
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|