|
|
Research Progress on Hydrogen Permeation Behavior of Hydrogen-doped Natural Gas Pipeline Steel |
WANG Huiling1,2, MING Hongliang1,2( ), WANG Jianqiu1,2,3, HAN En-Hou3 |
1.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3.Institute of Corrosion Science and Technology, Guangzhou 510530, China |
|
Cite this article:
WANG Huiling, MING Hongliang, WANG Jianqiu, HAN En-Hou. Research Progress on Hydrogen Permeation Behavior of Hydrogen-doped Natural Gas Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 249-260.
|
Abstract The development of green and low-carbon energy is imminent at present, and the hydrogen has been widely concerned as a low-carbon energy. At the present, it is the most economical and effective way to use the natural gas pipeline steel in service for long-distance hydrogen transport, but the pipeline steel is susceptible to hydrogen permeation, and hydrogen damage may invariably be caused by hydrogen permeation in the hydrogen-containing environment, which seriously affects the safe operation of the pipeline. Therefore, it is of great significance to study the hydrogen permeation behavior of pipeline steel used for transporting hydrogen-doped natural gas. The research methods of hydrogen permeation behavior of pipeline steel mainly include electrochemical hydrogen permeation and gaseous hydrogen permeation now. Herein, the similarities and differences in the hydrogen permeation processes and the factors affecting the hydrogen permeation behavior of pipeline steels caused by different hydrogen permeation methods are briefly described. The models and methods for calculating hydrogen permeation parameters are also introduced.
|
Received: 01 July 2024
32134.14.1005.4537.2024.193
|
|
Fund: National Key R&D Program of China(2021YFB4001601);Youth Innovation Promotion Association CAS(2022187) |
Corresponding Authors:
MING Hongliang, E-mail: hlming12s@imr.ac.cn
|
1 |
Tao C Q, Li C, Wang X H. Suitability of environmental regulation effect on total-factor energy efficiency and relation to energy consumption structure evolution [J]. China Popul. Resour. Environ., 2018, 28(4): 98
|
|
陶长琪, 李 翠, 王夏欢. 环境规制对全要素能源效率的作用效应与能源消费结构演变的适配关系研究 [J]. 中国人口·资源与环境, 2018, 28(4): 98
|
2 |
Huang Z J. The current situation and countermeasures of China's energy structure [J]. Petrochem. Ind. Technol., 2018, 25(3): 30
|
|
黄佐菊. 浅谈我国能源结构现状及对策 [J]. 石化技术, 2018, 25(3): 30
|
3 |
Jia G W, Xu W Q, Cai M L, et al. Micron-sized water spray-cooled quasi-isothermal compression for compressed air energy storage [J]. Exp. Therm. Fluid Sci., 2018, 96: 470
|
4 |
Ochoa Robles J, De-León Almaraz S, Azzaro-Pantel C. Hydrogen as a pillar of the energy transition [A]. Azzaro-Pantel C. Hydrogen Supply Chains [M]. San Diego: Academic Press, 2018: 3
|
5 |
Witkowski A, Rusin A, Majkut M, et al. Analysis of compression and transport of the methane/hydrogen mixture in existing natural gas pipelines [J]. Int. J. Pres. Ves. Pip., 2018, 166: 24
|
6 |
Song P F, Shan T W, Li Y W, et al. Impact of hydrogen into natural gas grid and technical feasibility analysis [J]. Mod. Chem. Ind., 2020, 40(7): 5
|
|
宋鹏飞, 单彤文, 李又武 等. 天然气管道掺入氢气的影响及技术可行性分析 [J]. 现代化工, 2020, 40(7): 5
doi: 10.16606/j.cnki.issn0253-4320.2020.07.002
|
7 |
Wang B H, Liang Y T, Zheng J Q, et al. An MILP model for the reformation of natural gas pipeline networks with hydrogen injection [J]. Int. J. Hydrog. Energy, 2018, 43: 16141
|
8 |
Zhang T M, Zhao W M, Li T T, et al. Comparison of hydrogen embrittlement susceptibility of three cathodic protected subsea pipeline steels from a point of view of hydrogen permeation [J]. Corros. Sci., 2018, 131: 104
|
9 |
Cheng Y F. Essence and gap analysis for hydrogen embrittlement of pipelines in high-pressure hydrogen environments [J]. Oil Gas Storage Transp., 2023, 42: 1
|
|
程玉峰. 高压氢气管道氢脆问题明晰 [J]. 油气储运, 2023, 42: 1
|
10 |
Yao C, Chen J, Ming H L, et al. Research progress on hydrogen permeability behavior of pipeline steel [J]. J. Chin. Soc. Corros Prot., 2023, 43: 209
|
|
姚 婵, 陈 健, 明洪亮 等. 管线钢氢渗透行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 209
|
11 |
Devanathan M A V, Stachurski Z. The adsorption and diffusion of electrolytic hydrogen in palladium [J]. Proc. Roy. Soc., 1962, 270A: 90
|
12 |
Vecchi L, Simillion H, Montoya R, et al. Modelling of hydrogen permeation experiments in iron alloys: characterization of the accessible parameters-Part I-The entry side [J]. Electrochim. Acta, 2018, 262: 57
|
13 |
Zheng S, Qin Y, Li W C, et al. Effect of hydrogen traps on hydrogen permeation in X80 pipeline steel—a joint experimental and modelling study [J]. Int. J. Hydrog. Energy, 2023, 48: 4773
|
14 |
Lim C, Pyun S I. Theoretical approach to faradaic admittance of hydrogen absorption reaction on metal membrane electrode [J]. Electrochim. Acta, 1993, 38: 2645
|
15 |
Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion Cracking [M]. Beijing: Science Press, 2013
|
|
褚武扬, 乔利杰, 李金许 等. 氢脆和应力腐蚀 [M]. 北京: 科学出版社, 2013
|
16 |
Xie D G, Li M, Shan Z W. Review on hydrogen-microstructure interaction in metals [J]. Mater. China, 2018, 37: 215
|
|
解德刚, 李 蒙, 单智伟. 氢与金属的微观交互作用研究进展 [J]. 中国材料进展, 2018, 37: 215
|
17 |
Liu S G, Zhou Y, Wang Z, et al. Progress of detection techniques for hydrogen mapping in steel [J]. Surf. Technol., 2020, 49(8): 1
|
|
刘神光, 周 耀, 王 正 等. 钢中氢分布检测技术进展 [J]. 表面技术, 2020, 49(8): 1
|
18 |
Koren E, Hagen C M H, Wang D, et al. Experimental comparison of gaseous and electrochemical hydrogen charging in X65 pipeline steel using the permeation technique [J]. Corros. Sci., 2023, 215: 111025
|
19 |
Hu Q, Cheng Y F. Effect of electrochemical hydrogen-charging conditions on nanomechanical properties of X80 pipeline steel [J]. Eng. Fail. Anal., 2024, 160: 108242
|
20 |
Koren E, Yamabe J, Lu X, et al. Hydrogen diffusivity in X65 pipeline steel: desorption and permeation studies [J]. Int. J. Hydrog. Energy, 2024, 61: 1157
|
21 |
Wu H, Ren C Q, Liu L, et al. Influences of different factors on hydrogen permeation behavior of X52 pipeline steel [J]. Mater. Mech. Eng., 2015, 39(5): 23
|
|
吴 辉, 任呈强, 刘 丽 等. 不同因素对X52管线钢氢渗透行为的影响 [J]. 机械工程材料, 2015, 39(5): 23
|
22 |
Castaño Rivera P, Ramunni V P, Bruzzoni P. Hydrogen trapping in an API 5L X60 steel [J]. Corros. Sci., 2012, 54: 106
|
23 |
Zhu Y Q, Song W, Li Y X, et al. Research progress on protection against hydrogen embrittlement of hydrogen-transport pipeline steels [J]. Surf. Technol., 2022, 51(11): 126
|
|
朱永强, 宋 维, 李雨霞 等. 输氢管线钢防止氢脆研究进展 [J]. 表面技术, 2022, 51(11): 126
|
24 |
Peng X H, Liu J, Huang F, et al. Effect of microstructure on hydrogen-induced cracking propagation and hydrogen trapping efficiency of pipeline steel [J]. Corros. Prot., 2013, 34: 882
|
|
彭先华, 刘 静, 黄 峰 等. 微观组织对管线钢氢致裂纹扩展方式及氢捕获效率的影响 [J]. 腐蚀与防护, 2013, 34: 882
|
25 |
Qiu W J, Li G M, Xiong H Y, et al. Experimental study on hydrogen diffusion and hydrogen corrosion in steel pipe [J]. Mech. Eng., 2022, 44: 776
|
|
仇文杰, 李国敏, 熊海燕 等. 氢在钢管壁内的扩散及氢腐蚀实验研究 [J]. 力学与实践, 2022, 44: 776
|
26 |
Yazdipour N, Haq A J, Muzaka K, et al. 2D modelling of the effect of grain size on hydrogen diffusion in X70 steel [J]. Comput. Mater. Sci., 2012, 56: 49
|
27 |
Yao C, Ming H L, Chen J, et al. Effect of cold deformation on the hydrogen permeation behavior of X65 pipeline steel [J]. Coatings, 2023, 13: 280
|
28 |
Xu L Z, Qiao G Y, Gong X, et al. Effect of through-thickness microstructure inhomogeneity on mechanical properties and strain hardening behavior in heavy-wall X70 pipeline steels [J]. J. Mater. Res. Technol., 2023, 25: 4216
|
29 |
Wang H L, Ming H L, Wang J Q, et al. Hydrogen permeation behavior at different positions in the normal direction of X42 and X52 pipeline steels [J]. Int. J. Hydrogen Energy, 2024, 72: 1105
|
30 |
Chu W Y. Hydrogen Damage and Delayed Fracture [M]. Beijing: Metallurgical Industry Press, 1988
|
|
褚武扬. 氢损伤和滞后断裂 [M]. 北京: 冶金工业出版社, 1988
|
31 |
Li S Y, Hu R S, Zhao W M, et al. Hydrogen adsorption and diffusion on steel surface [J]. Surf. Technol., 2020, 49(8): 15
|
|
李守英, 胡瑞松, 赵卫民 等. 氢在钢铁表面吸附以及扩散的研究现状 [J]. 表面技术, 2020, 49(8): 15
|
32 |
Li W W, Feng Y R, Gao H L. Study on the feature of X80 pipeline steel microstructural morphologies [J]. Pet. Instrum., 2015, 1(1): 36
|
|
李为卫, 冯耀荣, 高惠临. X80管线钢不同组织形态的显微结构特征研究 [J]. 石油仪器, 2015, 1(1): 36
|
33 |
Jiang D E, Carter E A. Adsorption and diffusion energetics of hydrogen atoms on Fe(110) from first principles [J]. Surf. Sci., 2003, 547: 85
|
34 |
Wang C L, Xie Z Z, Zhao Y, et al. Simulation study on adsorption and dissociation of hydrogen on iron, platinum and nikel metals [J]. Pet. Process. Petrochem., 2019, 50(2): 50
|
|
王春璐, 解增忠, 赵 毅 等. H2在Fe, Pt, Ni表面解离的模拟研究 [J]. 石油炼制与化工, 2019, 50(2): 50
|
35 |
Huo C F, Li Y W, Wang J G, et al. Surface structure and energetics of hydrogen adsorption on the Fe(111) surface [J]. J. Phys. Chem., 2005, 109B: 14160
|
36 |
Korlapati N V S, Khan F, Vaddiraju S, et al. Hydrogen diffusion dynamics on Fe(100) surface: a mechanism of hydrogen-induced failure [J]. Int. J. Hydrog. Energy, 2024, 65: 177
|
37 |
Sorescu D C. First principles calculations of the adsorption and diffusion of hydrogen on Fe(100) surface and in the bulk [J]. Catal. Today, 2005, 105: 44
|
38 |
Blyholder G, Head J, Ruette F. Semi-empirical calculation of H atom interaction with a 12 atom iron cluster [J]. Surf. Sci., 1983, 131: 403
|
39 |
Faramawy S, Zaki T, Sakr A A E. Natural gas origin, composition, and processing: a review [J]. J. Nat. Gas Sci. Eng., 2016, 34: 34
|
40 |
Wang C L, Xu X S, Hua Y, et al. Inhibiting effect of carbon monoxide on gaseous hydrogen embrittlement of pipelines transporting hydrogen [J]. Corros. Sci., 2024, 227: 111789
|
41 |
Zhang R, Yuan C, Liu C W, et al. Effects of natural gas impurities on hydrogen embrittlement susceptibility and hydrogen permeation of X52 pipeline steel [J]. Eng. Fail. Anal., 2024, 159: 108111
|
42 |
Zhou C S, Zheng S Q, Chen C F, et al. The effect of the partial pressure of H2S on the permeation of hydrogen in low carbon pipeline steel [J]. Corros. Sci., 2013, 67: 184
|
43 |
Zhou C S, Luan X F, Wang Z, et al. Study on the hydrogen permeation behaviour of X80 pipeline steel in medium with carbon dioxide [J]. J. Zhejiang Univ. Technol., 2018, 46: 458
|
|
周成双, 栾晓飞, 王 铮 等. CO2环境对X80管线钢氢渗透行为的影响 [J]. 浙江工业大学学报, 2018, 46: 458
|
44 |
Staykov A, Yamabe J, Somerday B P. Effect of hydrogen gas impurities on the hydrogen dissociation on iron surface [J]. Int. J. Quantum Chem., 2014, 114: 626
|
45 |
Sun Y H, Ren Y N, Cheng Y F. Dissociative adsorption of hydrogen and methane molecules at high-angle grain boundaries of pipeline steel studied by density functional theory modeling [J]. Int. J. Hydrog. Energy, 2022, 47: 41069
|
46 |
Li S Y, Zhao W M, Qiao J H, et al. Competitive adsorption of CO and H2 on strained Fe(110) surface [J]. Acta Phys. Sin., 2019, 68: 217103
|
|
李守英, 赵卫民, 乔建华 等. CO与H2在应变Fe(110)表面的竞争吸附 [J]. 物理学报, 2019, 68: 217103
|
47 |
Zhang S, Li J, An T, et al. Investigating the influence mechanism of hydrogen partial pressure on fracture toughness and fatigue life by in-situ hydrogen permeation [J]. Int. J. Hydrog. Energy, 2021, 46: 20621
|
48 |
Wang C L, Zhang J X, Liu C W, et al. Study on hydrogen embrittlement susceptibility of X80 steel through in-situ gaseous hydrogen permeation and slow strain rate tensile tests [J]. Int. J. Hydrog. Energy, 2023, 48: 243
|
49 |
Xu X S, Zhang R, Wang C L, et al. Experimental study on the temperature dependence of gaseous hydrogen permeation and hydrogen embrittlement susceptibility of X52 pipeline steel [J]. Eng. Fail. Anal., 2024, 155: 107746
|
50 |
Cao R, Ding Y, Zhao X K, et al. Research progress on corrosion and protection of welded joints of pipeline steels [J]. Corros. Sci. Prot. Technol., 2017, 29: 657
|
|
曹 睿, 丁 云, 赵小康 等. 管线钢焊接接头腐蚀与防护的研究进展 [J]. 腐蚀科学与防护技术, 2017, 29: 657
|
51 |
Zhao W M, Zhang T M, Zhao Y J, et al. Hydrogen permeation and embrittlement susceptibility of X80 welded joint under high-pressure coal gas environment [J]. Corros. Sci., 2016, 111: 84
|
52 |
Zhang T M, Wang Y, Zhao W M, et al. Hydrogen permeation parameters of X80 steel and welding HAZ under high pressure coal gas environment [J]. Acta Metall. Sin., 2015, 51: 1101
doi: 10.11900/0412.1961.2015.00039
|
|
张体明, 王 勇, 赵卫民 等. 高压煤制气环境下X80钢及热影响区的氢渗透参数研究 [J]. 金属学报, 2015, 51: 1101
|
53 |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Method of measurement of hydrogen permeation and determination of hydrogen uptake and transport in metals by an electrochemical technique [S]. Beijing: Standards Press of China, 2014
|
|
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 用电化学技术测量金属中氢渗透(吸收和迁移)的方法 [S]. 北京: 中国标准出版社, 2014
|
54 |
Zhang T Y, Zheng Y P, Wu Q Y. On the boundary conditions of electrochemical hydrogen permeation through iron [J]. J. Electrochem. Soc., 1999, 146: 1741
|
55 |
Pumphrey P H. On the boundary conditions for hydrogen permeation through cathodically charged iron and mild steel [J]. Scr. Metall., 1980, 14: 695
|
56 |
Cheng Y F. Analysis of electrochemical hydrogen permeation through X-65 pipeline steel and its implications on pipeline stress corrosion cracking [J]. Int. J. Hydrog. Energy, 2007, 32: 1269
|
57 |
Nanis L, Govindan Namboodhiri T K. Mathematics of the electrochemical extraction of hydrogen from iron [J]. J. Electrochem. Soc., 1972, 119: 691
|
58 |
Boes N, Züchner H. Electrochemical methods for studying diffusion, permeation and solubility of hydrogen in metals [J]. J. Less Common Met., 1976, 49: 223
|
59 |
Turnbull A, Saenz de Santa Maria M, Thomas N D. The effect of H2S concentration and pH on hydrogen permeation in AISI 410 stainless steel in 5%NaCl [J]. Corros. Sci., 1989, 29: 89
|
60 |
Guo Q C, Guo D N. Effects of outer stress on diffusion of H2 in steels [J]. Nat. Gas Ind., 1983, 3(4): 9
|
|
郭庆春, 郭大年. 外应力对氢在钢中扩散行为的影响 [J]. 天然气工业, 1983, 3(4): 9
|
61 |
Hadam U, Zakroczymski T. Absorption of hydrogen in tensile strained iron and high-carbon steel studied by electrochemical permeation and desorption techniques [J]. Int. J. Hydrog. Energy, 2009, 34: 2449
|
62 |
Oriani R A. The diffusion and trapping of hydrogen in steel [J]. Acta Metall., 1970, 18: 147
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|