Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (2): 249-260    DOI: 10.11902/1005.4537.2024.193
Current Issue | Archive | Adv Search |
Research Progress on Hydrogen Permeation Behavior of Hydrogen-doped Natural Gas Pipeline Steel
WANG Huiling1,2, MING Hongliang1,2(), WANG Jianqiu1,2,3, HAN En-Hou3
1.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Institute of Corrosion Science and Technology, Guangzhou 510530, China
Cite this article: 

WANG Huiling, MING Hongliang, WANG Jianqiu, HAN En-Hou. Research Progress on Hydrogen Permeation Behavior of Hydrogen-doped Natural Gas Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 249-260.

Download:  HTML  PDF(3630KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The development of green and low-carbon energy is imminent at present, and the hydrogen has been widely concerned as a low-carbon energy. At the present, it is the most economical and effective way to use the natural gas pipeline steel in service for long-distance hydrogen transport, but the pipeline steel is susceptible to hydrogen permeation, and hydrogen damage may invariably be caused by hydrogen permeation in the hydrogen-containing environment, which seriously affects the safe operation of the pipeline. Therefore, it is of great significance to study the hydrogen permeation behavior of pipeline steel used for transporting hydrogen-doped natural gas. The research methods of hydrogen permeation behavior of pipeline steel mainly include electrochemical hydrogen permeation and gaseous hydrogen permeation now. Herein, the similarities and differences in the hydrogen permeation processes and the factors affecting the hydrogen permeation behavior of pipeline steels caused by different hydrogen permeation methods are briefly described. The models and methods for calculating hydrogen permeation parameters are also introduced.

Key words:  pipeline steel      electrochemical hydrogen permeation      gaseous hydrogen permeation      hydrogen permeation curve     
Received:  01 July 2024      32134.14.1005.4537.2024.193
TG172  
Fund: National Key R&D Program of China(2021YFB4001601);Youth Innovation Promotion Association CAS(2022187)
Corresponding Authors:  MING Hongliang, E-mail: hlming12s@imr.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.193     OR     https://www.jcscp.org/EN/Y2025/V45/I2/249

Fig.1  Schematic diagram of electrochemical hydrogen permeation device (WE-working electrode, RE-reference electrode, CE-counter electrode)
Fig.2  Schematic diagram of electrochemical hydrogen permeation process in metal bulk[12]
Fig.3  Schematic diagram of hydrogen traps location in steel[17]
Fig.4  Schematic diagram of gaseous hydrogen permeation device (WE-working electrode, RE-reference electrode, CE-counter electrode)
Fig.5  Atom arrangement and adsorption sites on different faces of body-centered cubic α-Fe: (a) Fe(110)[33], (b) Fe(111)[35], (c) Fe(100)[36]
Adsorbed gasTopShort bridgeLong bridgeThree-fold
CO-1.89-1.64-1.82-1.83
H2-0.47-0.82-1.04-1.33
Table 1  Adsorption energies of CO and H2 on different sites on Fe(110) (eV)[46]
MaterialHydrogen pressure or hydrogen blending ratioiDeffC0
X52[49]2.5%, 12.5%, 25%, 50% (total pressure: 4 MPa)IncreaseAlmost constantIncrease
X65[18]1 MPa, 5 MPa, 10 MPaIncreaseIncreaseIncrease
X80[48]3%, 5%, 10%, 15%, 20% (total pressure: 10 MPa)IncreaseAlmost constantIncrease
X80[47]2 MPa, 5 MPa, 8 MPa (total pressure: 12 MPa)IncreaseIncreaseIncrease
Table 2  Variation trend of gaseous hydrogen permeation parameters of different pipeline steels with increasing hydrogen pressure or hydrogen blending ratio
Fig.6  Diagram of hydrogen permeation curve
1 Tao C Q, Li C, Wang X H. Suitability of environmental regulation effect on total-factor energy efficiency and relation to energy consumption structure evolution [J]. China Popul. Resour. Environ., 2018, 28(4): 98
陶长琪, 李 翠, 王夏欢. 环境规制对全要素能源效率的作用效应与能源消费结构演变的适配关系研究 [J]. 中国人口·资源与环境, 2018, 28(4): 98
2 Huang Z J. The current situation and countermeasures of China's energy structure [J]. Petrochem. Ind. Technol., 2018, 25(3): 30
黄佐菊. 浅谈我国能源结构现状及对策 [J]. 石化技术, 2018, 25(3): 30
3 Jia G W, Xu W Q, Cai M L, et al. Micron-sized water spray-cooled quasi-isothermal compression for compressed air energy storage [J]. Exp. Therm. Fluid Sci., 2018, 96: 470
4 Ochoa Robles J, De-León Almaraz S, Azzaro-Pantel C. Hydrogen as a pillar of the energy transition [A]. Azzaro-Pantel C. Hydrogen Supply Chains [M]. San Diego: Academic Press, 2018: 3
5 Witkowski A, Rusin A, Majkut M, et al. Analysis of compression and transport of the methane/hydrogen mixture in existing natural gas pipelines [J]. Int. J. Pres. Ves. Pip., 2018, 166: 24
6 Song P F, Shan T W, Li Y W, et al. Impact of hydrogen into natural gas grid and technical feasibility analysis [J]. Mod. Chem. Ind., 2020, 40(7): 5
宋鹏飞, 单彤文, 李又武 等. 天然气管道掺入氢气的影响及技术可行性分析 [J]. 现代化工, 2020, 40(7): 5
doi: 10.16606/j.cnki.issn0253-4320.2020.07.002
7 Wang B H, Liang Y T, Zheng J Q, et al. An MILP model for the reformation of natural gas pipeline networks with hydrogen injection [J]. Int. J. Hydrog. Energy, 2018, 43: 16141
8 Zhang T M, Zhao W M, Li T T, et al. Comparison of hydrogen embrittlement susceptibility of three cathodic protected subsea pipeline steels from a point of view of hydrogen permeation [J]. Corros. Sci., 2018, 131: 104
9 Cheng Y F. Essence and gap analysis for hydrogen embrittlement of pipelines in high-pressure hydrogen environments [J]. Oil Gas Storage Transp., 2023, 42: 1
程玉峰. 高压氢气管道氢脆问题明晰 [J]. 油气储运, 2023, 42: 1
10 Yao C, Chen J, Ming H L, et al. Research progress on hydrogen permeability behavior of pipeline steel [J]. J. Chin. Soc. Corros Prot., 2023, 43: 209
姚 婵, 陈 健, 明洪亮 等. 管线钢氢渗透行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 209
11 Devanathan M A V, Stachurski Z. The adsorption and diffusion of electrolytic hydrogen in palladium [J]. Proc. Roy. Soc., 1962, 270A: 90
12 Vecchi L, Simillion H, Montoya R, et al. Modelling of hydrogen permeation experiments in iron alloys: characterization of the accessible parameters-Part I-The entry side [J]. Electrochim. Acta, 2018, 262: 57
13 Zheng S, Qin Y, Li W C, et al. Effect of hydrogen traps on hydrogen permeation in X80 pipeline steel—a joint experimental and modelling study [J]. Int. J. Hydrog. Energy, 2023, 48: 4773
14 Lim C, Pyun S I. Theoretical approach to faradaic admittance of hydrogen absorption reaction on metal membrane electrode [J]. Electrochim. Acta, 1993, 38: 2645
15 Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion Cracking [M]. Beijing: Science Press, 2013
褚武扬, 乔利杰, 李金许 等. 氢脆和应力腐蚀 [M]. 北京: 科学出版社, 2013
16 Xie D G, Li M, Shan Z W. Review on hydrogen-microstructure interaction in metals [J]. Mater. China, 2018, 37: 215
解德刚, 李 蒙, 单智伟. 氢与金属的微观交互作用研究进展 [J]. 中国材料进展, 2018, 37: 215
17 Liu S G, Zhou Y, Wang Z, et al. Progress of detection techniques for hydrogen mapping in steel [J]. Surf. Technol., 2020, 49(8): 1
刘神光, 周 耀, 王 正 等. 钢中氢分布检测技术进展 [J]. 表面技术, 2020, 49(8): 1
18 Koren E, Hagen C M H, Wang D, et al. Experimental comparison of gaseous and electrochemical hydrogen charging in X65 pipeline steel using the permeation technique [J]. Corros. Sci., 2023, 215: 111025
19 Hu Q, Cheng Y F. Effect of electrochemical hydrogen-charging conditions on nanomechanical properties of X80 pipeline steel [J]. Eng. Fail. Anal., 2024, 160: 108242
20 Koren E, Yamabe J, Lu X, et al. Hydrogen diffusivity in X65 pipeline steel: desorption and permeation studies [J]. Int. J. Hydrog. Energy, 2024, 61: 1157
21 Wu H, Ren C Q, Liu L, et al. Influences of different factors on hydrogen permeation behavior of X52 pipeline steel [J]. Mater. Mech. Eng., 2015, 39(5): 23
吴 辉, 任呈强, 刘 丽 等. 不同因素对X52管线钢氢渗透行为的影响 [J]. 机械工程材料, 2015, 39(5): 23
22 Castaño Rivera P, Ramunni V P, Bruzzoni P. Hydrogen trapping in an API 5L X60 steel [J]. Corros. Sci., 2012, 54: 106
23 Zhu Y Q, Song W, Li Y X, et al. Research progress on protection against hydrogen embrittlement of hydrogen-transport pipeline steels [J]. Surf. Technol., 2022, 51(11): 126
朱永强, 宋 维, 李雨霞 等. 输氢管线钢防止氢脆研究进展 [J]. 表面技术, 2022, 51(11): 126
24 Peng X H, Liu J, Huang F, et al. Effect of microstructure on hydrogen-induced cracking propagation and hydrogen trapping efficiency of pipeline steel [J]. Corros. Prot., 2013, 34: 882
彭先华, 刘 静, 黄 峰 等. 微观组织对管线钢氢致裂纹扩展方式及氢捕获效率的影响 [J]. 腐蚀与防护, 2013, 34: 882
25 Qiu W J, Li G M, Xiong H Y, et al. Experimental study on hydrogen diffusion and hydrogen corrosion in steel pipe [J]. Mech. Eng., 2022, 44: 776
仇文杰, 李国敏, 熊海燕 等. 氢在钢管壁内的扩散及氢腐蚀实验研究 [J]. 力学与实践, 2022, 44: 776
26 Yazdipour N, Haq A J, Muzaka K, et al. 2D modelling of the effect of grain size on hydrogen diffusion in X70 steel [J]. Comput. Mater. Sci., 2012, 56: 49
27 Yao C, Ming H L, Chen J, et al. Effect of cold deformation on the hydrogen permeation behavior of X65 pipeline steel [J]. Coatings, 2023, 13: 280
28 Xu L Z, Qiao G Y, Gong X, et al. Effect of through-thickness microstructure inhomogeneity on mechanical properties and strain hardening behavior in heavy-wall X70 pipeline steels [J]. J. Mater. Res. Technol., 2023, 25: 4216
29 Wang H L, Ming H L, Wang J Q, et al. Hydrogen permeation behavior at different positions in the normal direction of X42 and X52 pipeline steels [J]. Int. J. Hydrogen Energy, 2024, 72: 1105
30 Chu W Y. Hydrogen Damage and Delayed Fracture [M]. Beijing: Metallurgical Industry Press, 1988
褚武扬. 氢损伤和滞后断裂 [M]. 北京: 冶金工业出版社, 1988
31 Li S Y, Hu R S, Zhao W M, et al. Hydrogen adsorption and diffusion on steel surface [J]. Surf. Technol., 2020, 49(8): 15
李守英, 胡瑞松, 赵卫民 等. 氢在钢铁表面吸附以及扩散的研究现状 [J]. 表面技术, 2020, 49(8): 15
32 Li W W, Feng Y R, Gao H L. Study on the feature of X80 pipeline steel microstructural morphologies [J]. Pet. Instrum., 2015, 1(1): 36
李为卫, 冯耀荣, 高惠临. X80管线钢不同组织形态的显微结构特征研究 [J]. 石油仪器, 2015, 1(1): 36
33 Jiang D E, Carter E A. Adsorption and diffusion energetics of hydrogen atoms on Fe(110) from first principles [J]. Surf. Sci., 2003, 547: 85
34 Wang C L, Xie Z Z, Zhao Y, et al. Simulation study on adsorption and dissociation of hydrogen on iron, platinum and nikel metals [J]. Pet. Process. Petrochem., 2019, 50(2): 50
王春璐, 解增忠, 赵 毅 等. H2在Fe, Pt, Ni表面解离的模拟研究 [J]. 石油炼制与化工, 2019, 50(2): 50
35 Huo C F, Li Y W, Wang J G, et al. Surface structure and energetics of hydrogen adsorption on the Fe(111) surface [J]. J. Phys. Chem., 2005, 109B: 14160
36 Korlapati N V S, Khan F, Vaddiraju S, et al. Hydrogen diffusion dynamics on Fe(100) surface: a mechanism of hydrogen-induced failure [J]. Int. J. Hydrog. Energy, 2024, 65: 177
37 Sorescu D C. First principles calculations of the adsorption and diffusion of hydrogen on Fe(100) surface and in the bulk [J]. Catal. Today, 2005, 105: 44
38 Blyholder G, Head J, Ruette F. Semi-empirical calculation of H atom interaction with a 12 atom iron cluster [J]. Surf. Sci., 1983, 131: 403
39 Faramawy S, Zaki T, Sakr A A E. Natural gas origin, composition, and processing: a review [J]. J. Nat. Gas Sci. Eng., 2016, 34: 34
40 Wang C L, Xu X S, Hua Y, et al. Inhibiting effect of carbon monoxide on gaseous hydrogen embrittlement of pipelines transporting hydrogen [J]. Corros. Sci., 2024, 227: 111789
41 Zhang R, Yuan C, Liu C W, et al. Effects of natural gas impurities on hydrogen embrittlement susceptibility and hydrogen permeation of X52 pipeline steel [J]. Eng. Fail. Anal., 2024, 159: 108111
42 Zhou C S, Zheng S Q, Chen C F, et al. The effect of the partial pressure of H2S on the permeation of hydrogen in low carbon pipeline steel [J]. Corros. Sci., 2013, 67: 184
43 Zhou C S, Luan X F, Wang Z, et al. Study on the hydrogen permeation behaviour of X80 pipeline steel in medium with carbon dioxide [J]. J. Zhejiang Univ. Technol., 2018, 46: 458
周成双, 栾晓飞, 王 铮 等. CO2环境对X80管线钢氢渗透行为的影响 [J]. 浙江工业大学学报, 2018, 46: 458
44 Staykov A, Yamabe J, Somerday B P. Effect of hydrogen gas impurities on the hydrogen dissociation on iron surface [J]. Int. J. Quantum Chem., 2014, 114: 626
45 Sun Y H, Ren Y N, Cheng Y F. Dissociative adsorption of hydrogen and methane molecules at high-angle grain boundaries of pipeline steel studied by density functional theory modeling [J]. Int. J. Hydrog. Energy, 2022, 47: 41069
46 Li S Y, Zhao W M, Qiao J H, et al. Competitive adsorption of CO and H2 on strained Fe(110) surface [J]. Acta Phys. Sin., 2019, 68: 217103
李守英, 赵卫民, 乔建华 等. CO与H2在应变Fe(110)表面的竞争吸附 [J]. 物理学报, 2019, 68: 217103
47 Zhang S, Li J, An T, et al. Investigating the influence mechanism of hydrogen partial pressure on fracture toughness and fatigue life by in-situ hydrogen permeation [J]. Int. J. Hydrog. Energy, 2021, 46: 20621
48 Wang C L, Zhang J X, Liu C W, et al. Study on hydrogen embrittlement susceptibility of X80 steel through in-situ gaseous hydrogen permeation and slow strain rate tensile tests [J]. Int. J. Hydrog. Energy, 2023, 48: 243
49 Xu X S, Zhang R, Wang C L, et al. Experimental study on the temperature dependence of gaseous hydrogen permeation and hydrogen embrittlement susceptibility of X52 pipeline steel [J]. Eng. Fail. Anal., 2024, 155: 107746
50 Cao R, Ding Y, Zhao X K, et al. Research progress on corrosion and protection of welded joints of pipeline steels [J]. Corros. Sci. Prot. Technol., 2017, 29: 657
曹 睿, 丁 云, 赵小康 等. 管线钢焊接接头腐蚀与防护的研究进展 [J]. 腐蚀科学与防护技术, 2017, 29: 657
51 Zhao W M, Zhang T M, Zhao Y J, et al. Hydrogen permeation and embrittlement susceptibility of X80 welded joint under high-pressure coal gas environment [J]. Corros. Sci., 2016, 111: 84
52 Zhang T M, Wang Y, Zhao W M, et al. Hydrogen permeation parameters of X80 steel and welding HAZ under high pressure coal gas environment [J]. Acta Metall. Sin., 2015, 51: 1101
doi: 10.11900/0412.1961.2015.00039
张体明, 王 勇, 赵卫民 等. 高压煤制气环境下X80钢及热影响区的氢渗透参数研究 [J]. 金属学报, 2015, 51: 1101
53 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Method of measurement of hydrogen permeation and determination of hydrogen uptake and transport in metals by an electrochemical technique [S]. Beijing: Standards Press of China, 2014
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 用电化学技术测量金属中氢渗透(吸收和迁移)的方法 [S]. 北京: 中国标准出版社, 2014
54 Zhang T Y, Zheng Y P, Wu Q Y. On the boundary conditions of electrochemical hydrogen permeation through iron [J]. J. Electrochem. Soc., 1999, 146: 1741
55 Pumphrey P H. On the boundary conditions for hydrogen permeation through cathodically charged iron and mild steel [J]. Scr. Metall., 1980, 14: 695
56 Cheng Y F. Analysis of electrochemical hydrogen permeation through X-65 pipeline steel and its implications on pipeline stress corrosion cracking [J]. Int. J. Hydrog. Energy, 2007, 32: 1269
57 Nanis L, Govindan Namboodhiri T K. Mathematics of the electrochemical extraction of hydrogen from iron [J]. J. Electrochem. Soc., 1972, 119: 691
58 Boes N, Züchner H. Electrochemical methods for studying diffusion, permeation and solubility of hydrogen in metals [J]. J. Less Common Met., 1976, 49: 223
59 Turnbull A, Saenz de Santa Maria M, Thomas N D. The effect of H2S concentration and pH on hydrogen permeation in AISI 410 stainless steel in 5%NaCl [J]. Corros. Sci., 1989, 29: 89
60 Guo Q C, Guo D N. Effects of outer stress on diffusion of H2 in steels [J]. Nat. Gas Ind., 1983, 3(4): 9
郭庆春, 郭大年. 外应力对氢在钢中扩散行为的影响 [J]. 天然气工业, 1983, 3(4): 9
61 Hadam U, Zakroczymski T. Absorption of hydrogen in tensile strained iron and high-carbon steel studied by electrochemical permeation and desorption techniques [J]. Int. J. Hydrog. Energy, 2009, 34: 2449
62 Oriani R A. The diffusion and trapping of hydrogen in steel [J]. Acta Metall., 1970, 18: 147
[1] ZHAO Jie, XU Guangxu, ZHANG Hongwei, LI Jingfa, LV Ran, WANG Jialong, YAN Donglei. Coupling Effect of Hydrogen Embrittlement and Corrosion of X80 Pipeline Steel in Hydrogen-doped Natural Gas[J]. 中国腐蚀与防护学报, 2025, 45(2): 407-415.
[2] LIU Tianle, WEI Boxin, FU Anqing, SU Hang, CHEN Tingshu, WANG Chaoming, WANG Sui. Hydrogen Damage of X80 Pipeline Steel in Hydrogen-doped Gaseous Atmosphere[J]. 中国腐蚀与防护学报, 2025, 45(2): 423-430.
[3] CHEN Kai, DU Yifan, XU Haoyun, LV Liang, DANG Guiming, WANG Yujin, ZHENG Shuqi. Hydrogen Permeation and Hydrogen Embrittlement Sensitivity of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
[4] WU Yuhang, CHEN Xu, WANG Shoude, LIU Chang, LIU Jie. Stress Corrosion Behavior of X70 Steel in an Artificial Near-neutral Soil Solution Under Direct Current[J]. 中国腐蚀与防护学报, 2025, 45(2): 489-496.
[5] WAN Hongjiang, MING Hongliang, WANG Jianqiu, HAN En-Hou. Effect of Small Amount of O2 and CO on Hydrogen Embrittlement Susceptibility of X52 Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 371-380.
[6] FAN Jiajun, DONG Lijin, MA Cheng, ZHANG Ziyu, MING Hongliang, WEI Boxin, PENG Qing, WANG Qinying. Research Progress on Hydrogen-assisted Fatigue Crack Growth of Pipeline Steels in Hydrogen-blended Natural Gas Environment[J]. 中国腐蚀与防护学报, 2025, 45(2): 296-306.
[7] WANG Yali, GUAN Fang, DUAN Jizhou, ZHANG Lina, YANG Zhengxian, HOU Baorong. Synergistic Inhibition of Rhamnolipid and 2, 2-dibromo-3-hypoazopropionamide on Microbiologically Influenced Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1412-1422.
[8] HU Lihua, YI Hualei, YANG Weijian, SUN Chong, SUN Jianbo. Effect of Water Content on Corrosion Behavior of X65 Pipeline Steel in Supercritical CO2 Fluids[J]. 中国腐蚀与防护学报, 2024, 44(3): 576-584.
[9] LI Xiaohui, TAO Yiqi, HUANG Hao, ZHANG Zhicheng, LI Entong, LYU Zhanpeng, CHEN Junjie. Effect of Magnetic Field on Anodic Processes of X70 Pipeline Steel in Sodium Carbonate Solution[J]. 中国腐蚀与防护学报, 2024, 44(3): 765-771.
[10] DENG Zhibin, HU Xiao, LIU Yingyan, YUE Hang, ZHANG Qian, TANG Haiping, LU Rui. Effect of Magnetic Field on Corrosion Behavior of L360 Pipeline Steel and Welded Joints in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(2): 471-479.
[11] GUO Shiwen, WU Haozhi, DONG Shaohua, CHEN Lin, CHENG Frank. Simulation of Hydrogen Distribution in Pipeline with Double Corrosion Defects[J]. 中国腐蚀与防护学报, 2024, 44(2): 335-344.
[12] PEI Yingying, GUAN Fang, DONG Xucheng, ZHANG Ruiyong, DUAN Jizhou, HOU Baorong. Effect of Desulfovibrio Bizertensis SY-1 on Corrosive Behavior of Metal Materials Under Cathodic Polarization[J]. 中国腐蚀与防护学报, 2024, 44(2): 345-354.
[13] YAO Chan, CHEN Jian, MING Hongliang, WANG Jianqiu. Research Progress on Hydrogen Permeability Behavior of Pipeline Steel[J]. 中国腐蚀与防护学报, 2023, 43(2): 209-219.
[14] LI Kexuan, SONG Longfei, LI Xiaorong. Effect of pH on Electrochemical Corrosion and Stress Corrosion Behavior of X100 Pipeline Steel in CO32-/HCO3- Solutions[J]. 中国腐蚀与防护学报, 2022, 42(5): 779-784.
[15] ZHAO Baozhu, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Comparison of Corrosion Resistance of CoCrFeMnNi High Entropy Alloys with Pipeline Steels in an Artificial Alkaline Soil Solution[J]. 中国腐蚀与防护学报, 2022, 42(3): 425-434.
No Suggested Reading articles found!