|
|
Research Progress on Hydrogen Damage Behavior of Pipeline Steel and Welds for Transportation of Hydrogen-blended Natural Gas |
BAI Yunlong1,2, LENG Bing3, WEI Boxin1,2,4, DONG Lijin5, YU Changkun1, XU Jin1,2, SUN Cheng1,2( ) |
1.Liaoning Shenyang Soil and Atmosphere Corrosion of Material National Observation and Research Station, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3.Oil Production Technology Research Institute of China Petroleum Liaohe Oilfield Company, Panjin 110206, China 4.School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore 5.School of New Energy and Material, Southwest Petroleum University, Chengdu 610500, China |
|
Cite this article:
BAI Yunlong, LENG Bing, WEI Boxin, DONG Lijin, YU Changkun, XU Jin, SUN Cheng. Research Progress on Hydrogen Damage Behavior of Pipeline Steel and Welds for Transportation of Hydrogen-blended Natural Gas. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 283-295.
|
Abstract To transfer the blend natural gas with hydrogen through the existing natural gas pipelines is currently one of the most economical and effective ways for hydrogen energy transportation. However, when pipelines in contact with hydrogen-enriched atmospheres, hydrogen atoms can permeate into the pipeline steels inducing hydrogen damages, which can severely threaten the safety of pipelines. Factors such as high-pressure, stress, and corrosive media during service may be involved to the damage of pipelines. Based on these issues, this paper summarizes the compatibility of pipeline steels with hydrogen, analyzes the adsorption and diffusion of hydrogen within the steels from the perspectives of hydrogen permeation behavior and testing methods. Additionally, it summarizes the forms and mechanisms of hydrogen damage in pipeline steels and welds of transportation of hydrogen-blended natural gas, in terms of the relevant influencing factors. The findings may provide a theoretical basis for the selection, design, and safe service of transporting hydrogen-blended natural gas pipelines, promoting the safe development of the hydrogen economy.
|
Received: 18 August 2024
32134.14.1005.4537.2024.260
|
|
Fund: National Natural Science Foundation of China(52301115);National Natural Science Foundation of China(51871228);IMR Innovation Fund(2023-PY12) |
Corresponding Authors:
SUN Cheng, E-mail: chengsun@imr.ac.cn
|
1 |
Qiu Y, Zhou S Y, Gu W, et al. Application prospect analysis of hydrogen enriched compressed natural gas technologies under the target of carbon emission peak and carbon neutrality [J]. Proc. CSEE, 2022, 42: 1301
|
|
邱 玥, 周苏洋, 顾 伟 等. “ 碳达峰、碳中和”目标下混氢天然气技术应用前景分析 [J]. 中国电机工程学报, 2022, 42: 1301
|
2 |
Yang C, Ogden J. Determining the lowest-cost hydrogen delivery mode [J]. Int. J. Hydrog. Energy, 2007, 32(2): 268
|
3 |
Miao A K, Yuan Y, Wu H, et al. Research on development status and trend of green hydrogen energy technologies under targets of carbon peak and carbon neutrality [J]. Distributed Energy, 2021, 6(4): 15
|
|
苗安康, 袁 越, 吴 涵 等. “双碳”目标下绿色氢能技术发展现状与趋势研究 [J]. 分布式能源, 2021, 6(4): 15
|
4 |
Li H Y, Li J L, Lin M Z, et al. Analysis on world energy supply & demand in 2020 under the background of "carbon neutrality" [J]. Nat. Gas Oil, 2021, 39(6): 132
|
|
李洪言, 李家龙, 林名桢 等. " 碳中和"背景下2020年全球能源供需分析 [J]. 天然气与石油, 2021, 39(6): 132
|
5 |
Li X C, Li Z N, Wang H F, et al. Hydrogen embrittlement sensitivity for welded structural parts of DH36 marine engineering steel [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 416
|
|
李新城, 李兆南, 王海锋 等. DH36海洋工程钢焊接结构的氢脆敏感性研究 [J]. 中国腐蚀与防护学报, 2025, 45: 416
|
6 |
Zhou Y, Zhang H B, Du M, et al. Effect of cathodic potentials on hydrogen embrittlement of 1000 MPa grade high strength steel in simulated deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 409
|
|
周 宇, 张海兵, 杜 敏 等. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 409
|
7 |
Zhang T M, Zhao W M, Guo W, et al. Susceptibility to hydrogen embrittlement of X65 steel under cathodic protection in artificial sea water [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 315
|
|
张体明, 赵卫民, 郭 望 等. 阴极保护下X65钢在模拟海水中的氢脆敏感性研究 [J]. 中国腐蚀与防护学报, 2014, 34: 315
doi: 10.11902/1005.4537.2013.109
|
8 |
Wen L J, Gao Z M, Liu Y Y, et al. Effects of applied cathodic potential on susceptibility to hydrogen embrittlement and mechanical properties of Q235 steel [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 271
|
|
文丽娟, 高志明, 刘洋洋 等. 阴极保护电位对Q235钢氢脆敏感性和力学性能的影响 [J]. 中国腐蚀与防护学报, 2013, 33: 271
|
9 |
Haeseldonckx D, D'haeseleer W. The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure [J]. Int. J. Hydrog. Energy, 2007, 32: 1381
|
10 |
Li X F, Ma X F, Zhang J, et al. Review of hydrogen embrittlement in metals: hydrogen diffusion, hydrogen characterization, hydrogen embrittlement mechanism and prevention [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 759
|
11 |
Zhou X, Wu D K, Cheng X, et al. Research progress of detection techniques for permeated hydrogen [J]. J. Chin. Soc. Corr. Prot., 2023, 43: 1203
doi: 10.11902/1005.4537.2022.410
|
|
周 欣, 吴大康, 成 旭 等. 渗透氢检测方法研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1203
|
12 |
Liu F, Yang H W, Deng F J. Research on hydrogen embrittlement behavior of X52 pipeline steel for hydrogen doped natural gas transportation [J]. Petro. New Energy, 2024, 36(03): 30
|
|
刘 方, 杨宏伟, 邓付洁. 掺氢天然气输送用X52管线钢的氢脆行为研究 [J]. 油气与新能源, 2024, 36(03): 30
|
13 |
Aucouturier M. Current solutions to hydrogen problems in steels [J]. Int. J. Hydrog. Energy, 1982, 7: 687
|
14 |
Amaro R L, Drexler E S, Slifka A J. Fatigue crack growth modeling of pipeline steels in high pressure gaseous hydrogen [J]. Int. J. Fatigue, 2014, 62: 249
|
15 |
Nanninga N E, Levy Y S, Drexler E S, et al. Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments [J]. Corros. Sci., 2012, 59: 1
|
16 |
Lee Y H, Lee H M, Kim Y I, et al. Mechanical degradation of API X65 pipeline steel by exposure to hydrogen gas [J]. Met. Mater. Int., 2011, 17: 389
|
17 |
Meng B, Gu C H, Zhang L, et al. Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures [J]. Int. J. Hydrog. Energy, 2017, 42: 7404
|
18 |
An T, Peng H T, Bai P P, et al. Influence of hydrogen pressure on fatigue properties of X80 pipeline steel [J]. Int. J. Hydrog. Energy, 2017, 42: 15669
|
19 |
Wasim M, Djukic M B. Hydrogen embrittlement of low carbon structural steel at macro-, micro- and nano-levels [J]. Int. J. Hydrog. Energy, 2020, 45: 2145
|
20 |
Zhao Y, Wang R. An investigation on mechanical behaviors of pipeline steel X70 after electrochemical hydrogen charging [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 293
|
|
赵 颖, 王 荣. X70管线钢电化学充氢后的力学行为研究 [J]. 中国腐蚀与防护学报, 2004, 24: 293
|
21 |
Wang T, Wang R. Electrochemical hydrogen charging behaviors of high strength pipeline steels [J]. Corros. Prot., 2010, 31: 450
|
|
王 涛, 王 荣. 高强度管线钢电化学充氢行为 [J]. 腐蚀与防护, 2010, 31: 450
|
22 |
Akiyama E, Li S J. Electrochemical hydrogen permeation tests under galvanostatic hydrogen charging conditions conventionally used for hydrogen embrittlement study [J]. Corros. Rev., 2016, 34: 103
|
23 |
Feng H, Zhu X H. Effect of electrochemical hydrogen charging on properties of X80 pipeline steel under different stress triaxialities [J]. Welded Pipe Tube, 2023, 46(9): 9
|
|
封 辉, 朱兴华. 不同应力三轴度下电化学充氢对X80管线钢性能影响 [J]. 焊管, 2023, 46(9): 9
|
24 |
Li J Q, Wu Z Y, Zhu L J, et al. Investigations of temperature effects on hydrogen diffusion and hydrogen embrittlement of X80 pipeline steel under electrochemical hydrogen charging environment [J]. Corros. Sci., 2023, 223: 111460
|
25 |
Asadipoor M, Pourkamali Anaraki A, Kadkhodapour J, et al. Macro- and microscale investigations of hydrogen embrittlement in X70 pipeline steel by in-situ and ex-situ hydrogen charging tensile tests and in-situ electrochemical micro-cantilever bending test [J]. Mater. Sci. Eng., 2020, 772A: 138762
|
26 |
Li S Y. Study on hydrogen adsorption/diffusion mechanism and control of X80 steel hydrogen pipeline [D]. Qingdao: China University of Petroleum (East China), 2020
|
|
李守英. 临氢管线X80钢氢吸附扩散机理及控制研究 [D]. 青岛: 中国石油大学(华东), 2020
|
27 |
Devanathan M A V, Stachurski Z. The adsorption and diffusion of electrolytic hydrogen in palladium [J]. Proc. R. Soc. Lond. Ser., 1962, 270A: 90
|
28 |
Johnson E W, Hill M L. The diffusivity of hydrogen in alpha iron [J]. Trans. Am. Inst. Min. Metall. Eng., 1960, 218: 1104
|
29 |
Zhang J Q, Fu L, Wang J J, et al. Hydrogen permeation and hydrogen damage behavior of low carbon steel welded joint [J]. Trans. China Welding Inst., 2014, 35(9): 23
|
|
张敬强, 付 雷, 王佳杰 等. 低碳钢焊接接头氢渗透与氢损伤行为分析 [J] 焊接学报, 2014, 35(9): 23
|
30 |
Sun Y H, Cheng Y F. Hydrogen permeation and distribution at a high-strength X80 steel weld under stressing conditions and the implication on pipeline failure [J]. Int. J. Hydrog. Energy, 2021, 46: 23100
|
31 |
Gou J X, Xing X, Cui G, et al. Effect of hydrogen on impact fracture of X80 steel weld: various heat inputs and coarse grain heat-affected zone [J]. Mater. Sci. Eng., 2023, 886A: 145673
|
32 |
Dong C F, Liu Z Y, Li X G, et al. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking [J]. Int. J. Hydrog. Energy, 2009, 34: 9879
|
33 |
Wang C L, Xie Z Z, Zhao Y, et al. Simulation study on adsorption and dissociation of hydrogen on iron, platinum and nikel metals [J]. Petrol. Proc. Petrochem., 2019, 50(2): 50
|
|
王春璐, 解增忠, 赵 毅 等. H2在Fe, Pt, Ni表面解离的模拟研究 [J]. 石油炼制与化工, 2019, 50(2): 50
|
34 |
Chohan U K, Koehler S P K, Jimenez-Melero E. Diffusion of hydrogen into and through γ-iron by density functional theory [J]. Surf. Sci., 2018, 672-673: 56
|
35 |
Xue J H, Bai C X. Numerical simulation of hydrogen enrichment induced by welding and heat treatment for X80 steel pipe [J]. Heat Treat. Met., 2023, 48(10): 285
|
|
薛景宏, 白晨旭. X80钢管道焊接致氢富集及热处理数值模拟 [J]. 金属热处理, 2023, 48(10): 285
|
36 |
Zhang T M, Zhao W M, Jiang W, et al. Numerical simulation of hydrogen diffusion in X80 welded joint under the combined effect of residual stress and microstructure inhomogeneity [J]. Acta Metall. Sin., 2019, 55: 258
doi: 10.11900/0412.1961.2018.00060
|
|
张体明, 赵卫民, 蒋 伟 等. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟 [J]. 金属学报, 2019, 55: 258
doi: 10.11900/0412.1961.2018.00060
|
37 |
Ba L Z, Li C N, Feng Z L, et al. Effects of alloying elements on the microstructure and properties of X80 pipeline steel deposited metal [J]. J. Tianjin Univ. (Sci. Technol.), 2023, 56: 1187
|
|
巴凌志, 利成宁, 冯兆龙 等. 合金元素对X80管线钢熔敷金属组织和性能的影响 [J] 天津大学学报(自然科学与工程技术版), 2023, 56: 1187
|
38 |
Lee S G, Lee D H, Sohn S S, et al. Effects of Ni and Mn addition on critical crack tip opening displacement (CTOD) of weld-simulated heat-affected zones of three high-strength low-alloy (HSLA) steels [J]. Mater. Sci. Eng., 2017, 697A: 55
|
39 |
Niu H, Li B, Liu B, et al. Effect of MnS inclusion and hydrogen partial pressure coupling on hydrogen embrittlement sensitivity of X80 pipeline steel [J]. Welded Pipe Tube, 2023, 46(10): 1
|
|
牛 辉, 李 拔, 刘 斌 等. MnS夹杂和氢分压耦合作用对X80管线钢氢脆敏感性影响研究 [J]. 焊管, 2023, 46(10): 1
|
40 |
Turk A, Pu S D, Bombač D, et al. Quantification of hydrogen trapping in multiphase steels: part II-effect of austenite morphology [J]. Acta Mater., 2020, 197: 253
|
41 |
Wen C J, Ho C, Boukamp B A, et al. Use of electrochemical methods to determine chemical-diffusion coefficients in alloys: application to 'LiAI' [J]. Int. Met. Rev., 1981, 26: 253
|
42 |
Chen C, Wang Y, Zhang Y C, et al. Study of hydrogen-induced delayed cracking in welding [J]. J. Shanghai Jiaotong Univ., 1984, 18(3): 51
|
|
陈 楚, 王 锬, 张月嫦 等. 焊接氢致延迟裂纹的研究 [J]. 上海交通大学学报, 1984, 18(3): 51
|
43 |
Yao X J, Wang J Q, Zuo J H, et al. Microstructure effects on corrosion and cracking behavior of X52 pipeline steel in H2S environment [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 95
|
|
姚学军, 王俭秋, 左景辉 等. 微观组织对X52钢抗H2S腐蚀和开裂性能的影响 [J]. 中国腐蚀与防护学报, 2012, 32: 95
|
44 |
Lee S J, Ronevich J A, Krauss G, et al. Hydrogen embrittlement of hardened low-carbon sheet steel [J]. ISIJ Int., 2010, 50: 294
|
45 |
Momotani Y, Shibata A, Yonemura T, et al. Effect of initial dislocation density on hydrogen accumulation behavior in martensitic steel [J] Scr. Mater., 2020, 178: 318
|
46 |
Tian H Y, Xin J C, Li Y, et al. Combined effect of cathodic potential and sulfur species on calcareous deposition, hydrogen permeation, and hydrogen embrittlement of a low carbon bainite steel in artificial seawater [J]. Corros. Sci., 2019, 158: 108089
|
47 |
Zhu X, Li W, Zhao H S, et al. Hydrogen trapping sites and hydrogen-induced cracking in high strength quenching & partitioning (Q&P) treated steel [J]. Int. J. Hydrog. Energy, 2014, 39(24): 13031
|
48 |
Yuan W, Huang F, Gan L J, et al. Effect of microstructure on hydrogen induced cracking and hydrogen trapping behavior of X100 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 536
|
|
袁 玮, 黄 峰, 甘丽君 等. 显微组织对X100管线钢氢致开裂及氢捕获行为影响 [J]. 中国腐蚀与防护学报, 2019, 39: 536
|
49 |
Wang W L, Chen Y, Zhan X Q, et al. Comparative study on hydrogen embrittlement susceptibility of X60 and X70 pipeline steels and their welded joints [J]. Surf. Technol., 2024, 53(4): 117
|
|
王万里, 陈 烨, 占先强 等. X60、X70管线钢及其焊接接头氢脆敏感性的对比研究 [J]. 表面技术, 2024, 53(4): 117
|
50 |
Li Y X, Zhang R, Liu C W, et al. Hydrogen embrittlement behavior of typical hydrogen-blended natural gas pipeline steel [J]. Oil Gas Storage Transp., 2022, 41: 732
|
|
李玉星, 张 睿, 刘翠伟 等. 掺氢天然气管道典型管线钢氢脆行为 [J] 油气储运, 2022, 41: 732
|
51 |
Zhao Y J. Influence of plastic strain on hydrogen permeation behavior and hydrogen embrittlement susceptibility of X80 pipeline steel [D]. Qingdao: China University of Petroleum (East China), 2018
|
|
赵玉娇. 塑性应变对X80临氢管线钢氢渗透行为和氢脆敏感性的影响 [D]. 青岛: 中国石油大学(华东), 2018
|
52 |
Xue H B, Cheng Y F. Hydrogen permeation and electrochemical corrosion behavior of the X80 pipeline steel weld [J]. J. Mater. Eng. Perform., 2013, 22: 170
|
53 |
Yan C Y, Zhang G Y, Liu C Y. Numerical simulation of hydrogen distribution in welded joint of X80 pipeline steel [J]. Trans. China Welding Inst., 2015, 36(9): 103
|
|
严春妍, 张根元, 刘翠英. X80管线钢焊接接头氢分布的数值模拟 [J]. 焊接学报, 2015, 36(9): 103
|
54 |
Birnbaum H K, Sofronis P. Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture [J] Mater. Sci. Eng., 1994, 176A: 191
|
55 |
Zhang T Y, Chu W Y, Xiao J M. Strain field of hydrogen atoms in iron [J]. Acta Metall. Sin., 1985, 21: 42
|
|
张统一, 褚武扬, 肖纪美. 氢在铁中的应变场 [J]. 金属学报, 1985, 21: 42
|
56 |
Park C, Kang N, Kim M, et al. Effect of prestrain on hydrogen diffusion and trapping in structural steel [J]. Mater. Lett., 2019, 235: 193
|
57 |
Jiang W C, Gong J M, Tang J Q, et al. Finite element simulation of the effect of welding residual stress on hydrogen diffusion [J]. Acta Metall. Sin., 2006, 42: 1221
|
|
蒋文春, 巩建鸣, 唐建群 等. 焊接残余应力对氢扩散影响的有限元模拟 [J]. 金属学报, 2006, 42: 1221
|
58 |
Liu W C, Wei B X, Yin H, et al. Finite element analysis of hydrogen permeation in X80 pipeline with corrosion defects under axial strain [J]. Surf. Technol., 2024, 53(8): 84
|
|
刘韦辰, 韦博鑫, 尹 航 等. 轴向应变作用下含腐蚀缺陷X80管道氢渗透的有限元分析 [J]. 表面技术, 2024, 53(8): 84
|
59 |
Slifka A J, Drexler E S, Nanninga N E, et al. Fatigue crack growth of two pipeline steels in a pressurized hydrogen environment [J]. Corros. Sci., 2014, 78: 313
|
60 |
Guo W, Zhao W M, Zhang T M, et al. Hydrogen permeation behavior of X80 steel under cathodic polarization and stress [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 353
|
|
郭 望, 赵卫民, 张体明 等. 阴极极化和应力耦合作用下X80钢氢渗透行为研究 [J]. 中国腐蚀与防护学报, 2015, 35: 353
|
61 |
Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion Cracking [M]. Beijing: Science Press, 2013: 1
|
|
褚武扬, 乔利杰, 李金许 等. 氢脆和应力腐蚀 [M]. 北京: 科学出版社, 2013: 1
|
62 |
Zapffe C A, Sims C E. Hydrogen embrittlement, internal stress and defects in steel [J]. Am. Inst. Mining Metall. Petrol. Eng., 1941, 145: 225
|
63 |
Chu W Y, Gao K W, Huang Y Z, et al. Initiation of fissure from hydrogen blister in rail steel [J]. Corrosion, 2000, 56: 1046
|
64 |
Xie D G, Wang Z J, Sun J, et al. In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface [J]. Nat. Mater., 2015, 14: 899
|
65 |
Beachem C D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”) [J]. Metall. Trans., 1972, 3: 441
|
66 |
Ferreira P J, Robertson I M, Birnbaum H K. Hydrogen effects on the interaction between dislocations [J]. Acta Mater., 1998, 46: 1749
|
67 |
Huang L C, Chen D K, Xie D G, et al. Quantitative tests revealing hydrogen-enhanced dislocation motion in α-iron [J]. Nat. Mater., 2023, 22: 710
|
68 |
Djukic M, Bakic G, Šijački-Žeravčić V, et al. The synergistic action of HELP and HEDE mechanisms of hydrogen embrittlement in steels [A]. Invited Talk-International Symposium: “HYDROGENIUS, I 2CNER and HydroMate Joint Research Symposium on HydrogenMaterials Interactions 2021”[C]. Fukuoka, Japen, 2021
|
69 |
Xue J L, Guo W, Xia M S, et al. In-depth understanding in the effect of hydrogen on microstructural evolution, mechanical properties and fracture micro-mechanisms of advanced high-strength steels welded joints [J]. Corros. Sci., 2024, 233: 112112
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|