Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (2): 283-295    DOI: 10.11902/1005.4537.2024.260
Current Issue | Archive | Adv Search |
Research Progress on Hydrogen Damage Behavior of Pipeline Steel and Welds for Transportation of Hydrogen-blended Natural Gas
BAI Yunlong1,2, LENG Bing3, WEI Boxin1,2,4, DONG Lijin5, YU Changkun1, XU Jin1,2, SUN Cheng1,2()
1.Liaoning Shenyang Soil and Atmosphere Corrosion of Material National Observation and Research Station, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.Oil Production Technology Research Institute of China Petroleum Liaohe Oilfield Company, Panjin 110206, China
4.School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
5.School of New Energy and Material, Southwest Petroleum University, Chengdu 610500, China
Cite this article: 

BAI Yunlong, LENG Bing, WEI Boxin, DONG Lijin, YU Changkun, XU Jin, SUN Cheng. Research Progress on Hydrogen Damage Behavior of Pipeline Steel and Welds for Transportation of Hydrogen-blended Natural Gas. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 283-295.

Download:  HTML  PDF(19965KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To transfer the blend natural gas with hydrogen through the existing natural gas pipelines is currently one of the most economical and effective ways for hydrogen energy transportation. However, when pipelines in contact with hydrogen-enriched atmospheres, hydrogen atoms can permeate into the pipeline steels inducing hydrogen damages, which can severely threaten the safety of pipelines. Factors such as high-pressure, stress, and corrosive media during service may be involved to the damage of pipelines. Based on these issues, this paper summarizes the compatibility of pipeline steels with hydrogen, analyzes the adsorption and diffusion of hydrogen within the steels from the perspectives of hydrogen permeation behavior and testing methods. Additionally, it summarizes the forms and mechanisms of hydrogen damage in pipeline steels and welds of transportation of hydrogen-blended natural gas, in terms of the relevant influencing factors. The findings may provide a theoretical basis for the selection, design, and safe service of transporting hydrogen-blended natural gas pipelines, promoting the safe development of the hydrogen economy.

Key words:  hydrogen blending pipelines      hydrogen-induced failure      hydrogen permeation      hydrogen induced cracking (HIC)      hydrogen diffusion     
Received:  18 August 2024      32134.14.1005.4537.2024.260
TG172  
Fund: National Natural Science Foundation of China(52301115);National Natural Science Foundation of China(51871228);IMR Innovation Fund(2023-PY12)
Corresponding Authors:  SUN Cheng, E-mail: chengsun@imr.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.260     OR     https://www.jcscp.org/EN/Y2025/V45/I2/283

Fig.1  Hydrogen diffusivity as a function of the inverse of temperature[24]
Fig.2  Selected SEM images of the without hydrogen (a) and hydrogen-charged (b) ferrite cantilevers deformed to 5000 nm displacement; (a2) and (b2) represent cross-sectional images of the marked areas in (a1) and (b1)[25]
Fig.3  Schematic diagram the impact crack propagation in the CGHAZ obtaining mainly LB and GB, respectively, in the absence and presence of H atoms: (a) LB, no H, (b) GB, no H, (c) LB with H, (d) GB with H[31]
Fig.4  Electronic cloud density distribution changes during H2 adsorption and dissociation on the Fe metal (110) surface[33]
Fig.5  2D potential energy surface at local minima for hydrogen diffusion through the (111) surface (a), energy profile for hydrogen diffusion through the surface (b), diffusion pathway from the surface through towards the bulk (c), dotted line between stationary points is only a guide to the eye[34]
Fig.6  Cloud maps of hydrogen concentration distribution of the X80 steel pipewithout (a), and with residual stress before heat treatment (b) and after heat treatment (c)[35]
Fig.7  SEM images (a, b, d, e, g, h) and EBSD orientation maps (c, f, i) of the specimens after applying tensile stress of 300 MPa and hydrogen micro-print treatment[45]
Fig.8  PAGB (a, c) and LB (b, d) at low (a, b) and high (c, d) hydrogen flux. (e) illustrates the evolution of hydrogen atom content (e1), hydrogen atom concentration (e2) and GB cohesive strength (e3) with increasing hydrogen flux[46]
Fig.9  Hydrogen permeation curves of X80 steel and HAZ subzones[36]
Fig.10  SEM images of the propagation path of HIC cracks in X100 pipeline steel: (a) original, (b) furnace cooling, (c) wind cooling[48]
Fig.11  Bright-field transmission electron microscope image showing the pillar after a series of cyclic compression loading and unloading sessions (a), configurations of dislocation 1 at σmax in vacuum (N = 1) and in 2 Pa H2 (N = 2) (b), the loading engineering stress σ and the digitally tracked projected glide distance σ of dislocation 1 in a typical load cycle are shown as a function of time (c), the measured σmax and σc of dislocation 1 as a function of loading cycle number in vacuum (d) and in 2 Pa H2 (e)[64]
1 Qiu Y, Zhou S Y, Gu W, et al. Application prospect analysis of hydrogen enriched compressed natural gas technologies under the target of carbon emission peak and carbon neutrality [J]. Proc. CSEE, 2022, 42: 1301
邱 玥, 周苏洋, 顾 伟 等. “ 碳达峰、碳中和”目标下混氢天然气技术应用前景分析 [J]. 中国电机工程学报, 2022, 42: 1301
2 Yang C, Ogden J. Determining the lowest-cost hydrogen delivery mode [J]. Int. J. Hydrog. Energy, 2007, 32(2): 268
3 Miao A K, Yuan Y, Wu H, et al. Research on development status and trend of green hydrogen energy technologies under targets of carbon peak and carbon neutrality [J]. Distributed Energy, 2021, 6(4): 15
苗安康, 袁 越, 吴 涵 等. “双碳”目标下绿色氢能技术发展现状与趋势研究 [J]. 分布式能源, 2021, 6(4): 15
4 Li H Y, Li J L, Lin M Z, et al. Analysis on world energy supply & demand in 2020 under the background of "carbon neutrality" [J]. Nat. Gas Oil, 2021, 39(6): 132
李洪言, 李家龙, 林名桢 等. " 碳中和"背景下2020年全球能源供需分析 [J]. 天然气与石油, 2021, 39(6): 132
5 Li X C, Li Z N, Wang H F, et al. Hydrogen embrittlement sensitivity for welded structural parts of DH36 marine engineering steel [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 416
李新城, 李兆南, 王海锋 等. DH36海洋工程钢焊接结构的氢脆敏感性研究 [J]. 中国腐蚀与防护学报, 2025, 45: 416
6 Zhou Y, Zhang H B, Du M, et al. Effect of cathodic potentials on hydrogen embrittlement of 1000 MPa grade high strength steel in simulated deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 409
周 宇, 张海兵, 杜 敏 等. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 409
7 Zhang T M, Zhao W M, Guo W, et al. Susceptibility to hydrogen embrittlement of X65 steel under cathodic protection in artificial sea water [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 315
张体明, 赵卫民, 郭 望 等. 阴极保护下X65钢在模拟海水中的氢脆敏感性研究 [J]. 中国腐蚀与防护学报, 2014, 34: 315
doi: 10.11902/1005.4537.2013.109
8 Wen L J, Gao Z M, Liu Y Y, et al. Effects of applied cathodic potential on susceptibility to hydrogen embrittlement and mechanical properties of Q235 steel [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 271
文丽娟, 高志明, 刘洋洋 等. 阴极保护电位对Q235钢氢脆敏感性和力学性能的影响 [J]. 中国腐蚀与防护学报, 2013, 33: 271
9 Haeseldonckx D, D'haeseleer W. The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure [J]. Int. J. Hydrog. Energy, 2007, 32: 1381
10 Li X F, Ma X F, Zhang J, et al. Review of hydrogen embrittlement in metals: hydrogen diffusion, hydrogen characterization, hydrogen embrittlement mechanism and prevention [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 759
11 Zhou X, Wu D K, Cheng X, et al. Research progress of detection techniques for permeated hydrogen [J]. J. Chin. Soc. Corr. Prot., 2023, 43: 1203
doi: 10.11902/1005.4537.2022.410
周 欣, 吴大康, 成 旭 等. 渗透氢检测方法研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1203
12 Liu F, Yang H W, Deng F J. Research on hydrogen embrittlement behavior of X52 pipeline steel for hydrogen doped natural gas transportation [J]. Petro. New Energy, 2024, 36(03): 30
刘 方, 杨宏伟, 邓付洁. 掺氢天然气输送用X52管线钢的氢脆行为研究 [J]. 油气与新能源, 2024, 36(03): 30
13 Aucouturier M. Current solutions to hydrogen problems in steels [J]. Int. J. Hydrog. Energy, 1982, 7: 687
14 Amaro R L, Drexler E S, Slifka A J. Fatigue crack growth modeling of pipeline steels in high pressure gaseous hydrogen [J]. Int. J. Fatigue, 2014, 62: 249
15 Nanninga N E, Levy Y S, Drexler E S, et al. Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments [J]. Corros. Sci., 2012, 59: 1
16 Lee Y H, Lee H M, Kim Y I, et al. Mechanical degradation of API X65 pipeline steel by exposure to hydrogen gas [J]. Met. Mater. Int., 2011, 17: 389
17 Meng B, Gu C H, Zhang L, et al. Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures [J]. Int. J. Hydrog. Energy, 2017, 42: 7404
18 An T, Peng H T, Bai P P, et al. Influence of hydrogen pressure on fatigue properties of X80 pipeline steel [J]. Int. J. Hydrog. Energy, 2017, 42: 15669
19 Wasim M, Djukic M B. Hydrogen embrittlement of low carbon structural steel at macro-, micro- and nano-levels [J]. Int. J. Hydrog. Energy, 2020, 45: 2145
20 Zhao Y, Wang R. An investigation on mechanical behaviors of pipeline steel X70 after electrochemical hydrogen charging [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 293
赵 颖, 王 荣. X70管线钢电化学充氢后的力学行为研究 [J]. 中国腐蚀与防护学报, 2004, 24: 293
21 Wang T, Wang R. Electrochemical hydrogen charging behaviors of high strength pipeline steels [J]. Corros. Prot., 2010, 31: 450
王 涛, 王 荣. 高强度管线钢电化学充氢行为 [J]. 腐蚀与防护, 2010, 31: 450
22 Akiyama E, Li S J. Electrochemical hydrogen permeation tests under galvanostatic hydrogen charging conditions conventionally used for hydrogen embrittlement study [J]. Corros. Rev., 2016, 34: 103
23 Feng H, Zhu X H. Effect of electrochemical hydrogen charging on properties of X80 pipeline steel under different stress triaxialities [J]. Welded Pipe Tube, 2023, 46(9): 9
封 辉, 朱兴华. 不同应力三轴度下电化学充氢对X80管线钢性能影响 [J]. 焊管, 2023, 46(9): 9
24 Li J Q, Wu Z Y, Zhu L J, et al. Investigations of temperature effects on hydrogen diffusion and hydrogen embrittlement of X80 pipeline steel under electrochemical hydrogen charging environment [J]. Corros. Sci., 2023, 223: 111460
25 Asadipoor M, Pourkamali Anaraki A, Kadkhodapour J, et al. Macro- and microscale investigations of hydrogen embrittlement in X70 pipeline steel by in-situ and ex-situ hydrogen charging tensile tests and in-situ electrochemical micro-cantilever bending test [J]. Mater. Sci. Eng., 2020, 772A: 138762
26 Li S Y. Study on hydrogen adsorption/diffusion mechanism and control of X80 steel hydrogen pipeline [D]. Qingdao: China University of Petroleum (East China), 2020
李守英. 临氢管线X80钢氢吸附扩散机理及控制研究 [D]. 青岛: 中国石油大学(华东), 2020
27 Devanathan M A V, Stachurski Z. The adsorption and diffusion of electrolytic hydrogen in palladium [J]. Proc. R. Soc. Lond. Ser., 1962, 270A: 90
28 Johnson E W, Hill M L. The diffusivity of hydrogen in alpha iron [J]. Trans. Am. Inst. Min. Metall. Eng., 1960, 218: 1104
29 Zhang J Q, Fu L, Wang J J, et al. Hydrogen permeation and hydrogen damage behavior of low carbon steel welded joint [J]. Trans. China Welding Inst., 2014, 35(9): 23
张敬强, 付 雷, 王佳杰 等. 低碳钢焊接接头氢渗透与氢损伤行为分析 [J] 焊接学报, 2014, 35(9): 23
30 Sun Y H, Cheng Y F. Hydrogen permeation and distribution at a high-strength X80 steel weld under stressing conditions and the implication on pipeline failure [J]. Int. J. Hydrog. Energy, 2021, 46: 23100
31 Gou J X, Xing X, Cui G, et al. Effect of hydrogen on impact fracture of X80 steel weld: various heat inputs and coarse grain heat-affected zone [J]. Mater. Sci. Eng., 2023, 886A: 145673
32 Dong C F, Liu Z Y, Li X G, et al. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking [J]. Int. J. Hydrog. Energy, 2009, 34: 9879
33 Wang C L, Xie Z Z, Zhao Y, et al. Simulation study on adsorption and dissociation of hydrogen on iron, platinum and nikel metals [J]. Petrol. Proc. Petrochem., 2019, 50(2): 50
王春璐, 解增忠, 赵 毅 等. H2在Fe, Pt, Ni表面解离的模拟研究 [J]. 石油炼制与化工, 2019, 50(2): 50
34 Chohan U K, Koehler S P K, Jimenez-Melero E. Diffusion of hydrogen into and through γ-iron by density functional theory [J]. Surf. Sci., 2018, 672-673: 56
35 Xue J H, Bai C X. Numerical simulation of hydrogen enrichment induced by welding and heat treatment for X80 steel pipe [J]. Heat Treat. Met., 2023, 48(10): 285
薛景宏, 白晨旭. X80钢管道焊接致氢富集及热处理数值模拟 [J]. 金属热处理, 2023, 48(10): 285
36 Zhang T M, Zhao W M, Jiang W, et al. Numerical simulation of hydrogen diffusion in X80 welded joint under the combined effect of residual stress and microstructure inhomogeneity [J]. Acta Metall. Sin., 2019, 55: 258
doi: 10.11900/0412.1961.2018.00060
张体明, 赵卫民, 蒋 伟 等. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟 [J]. 金属学报, 2019, 55: 258
doi: 10.11900/0412.1961.2018.00060
37 Ba L Z, Li C N, Feng Z L, et al. Effects of alloying elements on the microstructure and properties of X80 pipeline steel deposited metal [J]. J. Tianjin Univ. (Sci. Technol.), 2023, 56: 1187
巴凌志, 利成宁, 冯兆龙 等. 合金元素对X80管线钢熔敷金属组织和性能的影响 [J] 天津大学学报(自然科学与工程技术版), 2023, 56: 1187
38 Lee S G, Lee D H, Sohn S S, et al. Effects of Ni and Mn addition on critical crack tip opening displacement (CTOD) of weld-simulated heat-affected zones of three high-strength low-alloy (HSLA) steels [J]. Mater. Sci. Eng., 2017, 697A: 55
39 Niu H, Li B, Liu B, et al. Effect of MnS inclusion and hydrogen partial pressure coupling on hydrogen embrittlement sensitivity of X80 pipeline steel [J]. Welded Pipe Tube, 2023, 46(10): 1
牛 辉, 李 拔, 刘 斌 等. MnS夹杂和氢分压耦合作用对X80管线钢氢脆敏感性影响研究 [J]. 焊管, 2023, 46(10): 1
40 Turk A, Pu S D, Bombač D, et al. Quantification of hydrogen trapping in multiphase steels: part II-effect of austenite morphology [J]. Acta Mater., 2020, 197: 253
41 Wen C J, Ho C, Boukamp B A, et al. Use of electrochemical methods to determine chemical-diffusion coefficients in alloys: application to 'LiAI' [J]. Int. Met. Rev., 1981, 26: 253
42 Chen C, Wang Y, Zhang Y C, et al. Study of hydrogen-induced delayed cracking in welding [J]. J. Shanghai Jiaotong Univ., 1984, 18(3): 51
陈 楚, 王 锬, 张月嫦 等. 焊接氢致延迟裂纹的研究 [J]. 上海交通大学学报, 1984, 18(3): 51
43 Yao X J, Wang J Q, Zuo J H, et al. Microstructure effects on corrosion and cracking behavior of X52 pipeline steel in H2S environment [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 95
姚学军, 王俭秋, 左景辉 等. 微观组织对X52钢抗H2S腐蚀和开裂性能的影响 [J]. 中国腐蚀与防护学报, 2012, 32: 95
44 Lee S J, Ronevich J A, Krauss G, et al. Hydrogen embrittlement of hardened low-carbon sheet steel [J]. ISIJ Int., 2010, 50: 294
45 Momotani Y, Shibata A, Yonemura T, et al. Effect of initial dislocation density on hydrogen accumulation behavior in martensitic steel [J] Scr. Mater., 2020, 178: 318
46 Tian H Y, Xin J C, Li Y, et al. Combined effect of cathodic potential and sulfur species on calcareous deposition, hydrogen permeation, and hydrogen embrittlement of a low carbon bainite steel in artificial seawater [J]. Corros. Sci., 2019, 158: 108089
47 Zhu X, Li W, Zhao H S, et al. Hydrogen trapping sites and hydrogen-induced cracking in high strength quenching & partitioning (Q&P) treated steel [J]. Int. J. Hydrog. Energy, 2014, 39(24): 13031
48 Yuan W, Huang F, Gan L J, et al. Effect of microstructure on hydrogen induced cracking and hydrogen trapping behavior of X100 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 536
袁 玮, 黄 峰, 甘丽君 等. 显微组织对X100管线钢氢致开裂及氢捕获行为影响 [J]. 中国腐蚀与防护学报, 2019, 39: 536
49 Wang W L, Chen Y, Zhan X Q, et al. Comparative study on hydrogen embrittlement susceptibility of X60 and X70 pipeline steels and their welded joints [J]. Surf. Technol., 2024, 53(4): 117
王万里, 陈 烨, 占先强 等. X60、X70管线钢及其焊接接头氢脆敏感性的对比研究 [J]. 表面技术, 2024, 53(4): 117
50 Li Y X, Zhang R, Liu C W, et al. Hydrogen embrittlement behavior of typical hydrogen-blended natural gas pipeline steel [J]. Oil Gas Storage Transp., 2022, 41: 732
李玉星, 张 睿, 刘翠伟 等. 掺氢天然气管道典型管线钢氢脆行为 [J] 油气储运, 2022, 41: 732
51 Zhao Y J. Influence of plastic strain on hydrogen permeation behavior and hydrogen embrittlement susceptibility of X80 pipeline steel [D]. Qingdao: China University of Petroleum (East China), 2018
赵玉娇. 塑性应变对X80临氢管线钢氢渗透行为和氢脆敏感性的影响 [D]. 青岛: 中国石油大学(华东), 2018
52 Xue H B, Cheng Y F. Hydrogen permeation and electrochemical corrosion behavior of the X80 pipeline steel weld [J]. J. Mater. Eng. Perform., 2013, 22: 170
53 Yan C Y, Zhang G Y, Liu C Y. Numerical simulation of hydrogen distribution in welded joint of X80 pipeline steel [J]. Trans. China Welding Inst., 2015, 36(9): 103
严春妍, 张根元, 刘翠英. X80管线钢焊接接头氢分布的数值模拟 [J]. 焊接学报, 2015, 36(9): 103
54 Birnbaum H K, Sofronis P. Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture [J] Mater. Sci. Eng., 1994, 176A: 191
55 Zhang T Y, Chu W Y, Xiao J M. Strain field of hydrogen atoms in iron [J]. Acta Metall. Sin., 1985, 21: 42
张统一, 褚武扬, 肖纪美. 氢在铁中的应变场 [J]. 金属学报, 1985, 21: 42
56 Park C, Kang N, Kim M, et al. Effect of prestrain on hydrogen diffusion and trapping in structural steel [J]. Mater. Lett., 2019, 235: 193
57 Jiang W C, Gong J M, Tang J Q, et al. Finite element simulation of the effect of welding residual stress on hydrogen diffusion [J]. Acta Metall. Sin., 2006, 42: 1221
蒋文春, 巩建鸣, 唐建群 等. 焊接残余应力对氢扩散影响的有限元模拟 [J]. 金属学报, 2006, 42: 1221
58 Liu W C, Wei B X, Yin H, et al. Finite element analysis of hydrogen permeation in X80 pipeline with corrosion defects under axial strain [J]. Surf. Technol., 2024, 53(8): 84
刘韦辰, 韦博鑫, 尹 航 等. 轴向应变作用下含腐蚀缺陷X80管道氢渗透的有限元分析 [J]. 表面技术, 2024, 53(8): 84
59 Slifka A J, Drexler E S, Nanninga N E, et al. Fatigue crack growth of two pipeline steels in a pressurized hydrogen environment [J]. Corros. Sci., 2014, 78: 313
60 Guo W, Zhao W M, Zhang T M, et al. Hydrogen permeation behavior of X80 steel under cathodic polarization and stress [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 353
郭 望, 赵卫民, 张体明 等. 阴极极化和应力耦合作用下X80钢氢渗透行为研究 [J]. 中国腐蚀与防护学报, 2015, 35: 353
61 Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion Cracking [M]. Beijing: Science Press, 2013: 1
褚武扬, 乔利杰, 李金许 等. 氢脆和应力腐蚀 [M]. 北京: 科学出版社, 2013: 1
62 Zapffe C A, Sims C E. Hydrogen embrittlement, internal stress and defects in steel [J]. Am. Inst. Mining Metall. Petrol. Eng., 1941, 145: 225
63 Chu W Y, Gao K W, Huang Y Z, et al. Initiation of fissure from hydrogen blister in rail steel [J]. Corrosion, 2000, 56: 1046
64 Xie D G, Wang Z J, Sun J, et al. In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface [J]. Nat. Mater., 2015, 14: 899
65 Beachem C D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”) [J]. Metall. Trans., 1972, 3: 441
66 Ferreira P J, Robertson I M, Birnbaum H K. Hydrogen effects on the interaction between dislocations [J]. Acta Mater., 1998, 46: 1749
67 Huang L C, Chen D K, Xie D G, et al. Quantitative tests revealing hydrogen-enhanced dislocation motion in α-iron [J]. Nat. Mater., 2023, 22: 710
68 Djukic M, Bakic G, Šijački-Žeravčić V, et al. The synergistic action of HELP and HEDE mechanisms of hydrogen embrittlement in steels [A]. Invited Talk-International Symposium: “HYDROGENIUS, I 2CNER and HydroMate Joint Research Symposium on HydrogenMaterials Interactions 2021”[C]. Fukuoka, Japen, 2021
69 Xue J L, Guo W, Xia M S, et al. In-depth understanding in the effect of hydrogen on microstructural evolution, mechanical properties and fracture micro-mechanisms of advanced high-strength steels welded joints [J]. Corros. Sci., 2024, 233: 112112
[1] WANG Huiling, MING Hongliang, WANG Jianqiu, HAN En-Hou. Research Progress on Hydrogen Permeation Behavior of Hydrogen-doped Natural Gas Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 249-260.
[2] ZHAO Jie, XU Guangxu, ZHANG Hongwei, LI Jingfa, LV Ran, WANG Jialong, YAN Donglei. Coupling Effect of Hydrogen Embrittlement and Corrosion of X80 Pipeline Steel in Hydrogen-doped Natural Gas[J]. 中国腐蚀与防护学报, 2025, 45(2): 407-415.
[3] LIU Tianle, WEI Boxin, FU Anqing, SU Hang, CHEN Tingshu, WANG Chaoming, WANG Sui. Hydrogen Damage of X80 Pipeline Steel in Hydrogen-doped Gaseous Atmosphere[J]. 中国腐蚀与防护学报, 2025, 45(2): 423-430.
[4] CHEN Kai, DU Yifan, XU Haoyun, LV Liang, DANG Guiming, WANG Yujin, ZHENG Shuqi. Hydrogen Permeation and Hydrogen Embrittlement Sensitivity of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
[5] LI Xincheng, LI Zhaonan, WANG Haifeng, XU Yunze, WANG Mingyu, ZHEN Xingwei. Hydrogen Embrittlement Sensitivity for Welded Structural Parts of DH36 Marine Engineering Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 416-422.
[6] PENG Hao, CHENG Xiaoying, LI Xiaoliang, WANG Zhaofeng, CAI Zhenxiang. Effect of V and Nb on Hydrogen Traps in High Strength Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(2): 415-420.
[7] MA Cheng, CUI Yanfa, ZHANG Qing, ZHAO Linlin, WANG Lihui, XIONG Ziliu. Review of Hydrogen Embrittlement of Medium Manganese TRIP Steel[J]. 中国腐蚀与防护学报, 2022, 42(6): 885-893.
[8] Qiang GUO, Changfeng CHEN, Shihan LI, Haobo YU, Helin LI. Cracking Behavior of Cold-welding Layer on A350 LF2 Steel in H2S Environment[J]. 中国腐蚀与防护学报, 2018, 38(2): 167-173.
[9] Wang GUO,Weimin ZHAO,Timing ZHANG,Tianhai DU,Yong WANG. Hydrogen Permeation Behavior of X80 Steel under Cathodic Polarization and Stress[J]. 中国腐蚀与防护学报, 2015, 35(4): 353-358.
[10] ZHANG Timing, ZHAO Weimin, GUO Wang, WANG Yong. Susceptibility to Hydrogen Embrittlement of X65 Steel Under Cathodic Protection in Artificial Sea Water[J]. 中国腐蚀与防护学报, 2014, 34(4): 315-320.
[11] WANG Yanfei, GONG Jianming, TANG Jianqun,JIANG Wang, JIANG Yingjie. INFLUENCE OF RESIDUAL STRESS AND STRAIN GENERATED BY COLD DRAWING ON HYDROGEN DIFFUSION PROFILES OF STEEL WIRES[J]. 中国腐蚀与防护学报, 2011, 31(3): 202-207.
[12] MA Fangrong, LI Jinxu, CHU Wuyang, ZHANG Wanling, YANG Dake. STUDY OF HYDROGEN DIFFUSION OF ENAMELLED STEEL SHEET[J]. 中国腐蚀与防护学报, 2010, 30(4): 269-272.
[13] HUANG Yanliang ZHU Yongyan HUANG Sidi ZHANG Yangyang. HYDROGEN PERMEATION INVESTIGATION OF A MARINE STEEL IN THE SEA MUD WITH SULFATE-REDUCING BACTERIA[J]. 中国腐蚀与防护学报, 2008, 28(6期): 355-358.
[14] . HYDROGEN DAMAGE RESISTANCE OF ALUMINIZED STEEL[J]. 中国腐蚀与防护学报, 2005, 25(4): 237-240 .
[15] FU Chaoyang ZHENG Jiashen (Huazhong University of Science and Technology; Wuhan 430074). HYDROGEN PERMEATION AND CORROSION FATIGUE BEHAVIOR OF CARBON STEEL IN DRILLING FLUIDS[J]. 中国腐蚀与防护学报, 1997, 17(4): 263-268.
No Suggested Reading articles found!