Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (2): 423-430    DOI: 10.11902/1005.4537.2024.299
Current Issue | Archive | Adv Search |
Hydrogen Damage of X80 Pipeline Steel in Hydrogen-doped Gaseous Atmosphere
LIU Tianle1,2, WEI Boxin3, FU Anqing1, SU Hang1(), CHEN Tingshu1, WANG Chaoming1, WANG Sui1
1.State Key Laboratory of Oil and Gas Equipment, Tubular Goods Research Institute of CNPC, Xi'an 710077, China
2.Shaanxi Jiuzhou Petroleum Engineering & Technology Service Co., Ltd., Xi'an 710077, China
3.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

LIU Tianle, WEI Boxin, FU Anqing, SU Hang, CHEN Tingshu, WANG Chaoming, WANG Sui. Hydrogen Damage of X80 Pipeline Steel in Hydrogen-doped Gaseous Atmosphere. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 423-430.

Download:  HTML  PDF(12667KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the rapid development of hydrogen energy industry and the urgent need for safe storage and transportation of hydrogen, it has become a major trend to utilize the existing long-distance natural gas pipelines for hydrogen transportation. However, blending hydrogen into natural gas pipelines can adversely impact pipeline steel, posing new problems and challenges for the safe transportation. Herein, the mechanical behavior of X80 pipeline steel in atmospheres of hydrogen blended methane was assessed via in-situ slow-rate tensile test, gas-phase hydrogen permeation test and hydrogen content measurements. The main concern lies in that the effect of different hydrogen-blending ratios on the mechanical properties, hydrogen permeation behavior and the hydrogen content of X80 steel at a temperature of 298 K, along with the impact of temperature on the kinetic parameters of gas-phase hydrogen permeation by the hydrogen-blending ratio of 10%. Results indicated that as the hydrogen-blending ratio increases, the yield and tensile strength of X80 pipeline steel decreased slightly, while the elongation at break decreased gradually, and both the hydrogen embrittlement sensitivity index and the hydrogen permeability coefficient and diffusion coefficient increased. The hydrogen permeability and diffusion coefficients increase with the increase of temperature under the condition of 10% hydrogen doping ratio. At temperatures between 298 K and 373 K, the hydrogen diffusion activation energy and permeation activation energy of X80 pipeline steel were 1.56 and 11.25 kJ/mol, respectively.

Key words:  X80 pipeline steel      hydrogen embrittlement      hydrogen doping      gas phase hydrogen permeation     
Received:  13 September 2024      32134.14.1005.4537.2024.299
TE832  
Fund: National Natural Science Foundation of China(52071338);National Natural Science Foundation of China(52101113);Shaanxi Outstanding Youth Science Foundation(2022JC-34);China National Petroleum Corporation Science and Technology Development Program(2022-DQ0527);China National Petroleum Corporation Basic Research and Strategic Reserve Technology Research Fund Project(2023DQ03-04)
Corresponding Authors:  SU Hang, E-mail: Suhang12@cnpc.com.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.299     OR     https://www.jcscp.org/EN/Y2025/V45/I2/423

Fig.1  Metallographic microstructure of X80 steel
Fig.2  Dimensions of tensile specimens (unit: mm)
Fig.3  Stress-strain curves of X80 pipeline steel
Hydrogen blending ratio %Yield strength MPaTensile strength MPaPercentage elongation %

Hydrogen embrittlement sensitivity index

%

0614.5740.323.33-
10608.2720.622.224.76
30592.8705.821.597.46
50590.2687.618.0522.6
Table 1  Mechanical parameters of X80 pipeline steel in different hydrogen doping ratio environments
Fig.4  Microstructure of the tensile fracture of X80 pipeline steel: (a) air, (b) 10% hydrogen doping ratios, (c) 30% hydrogen doping ratios, (d) 50% hydrogen doping ratios
Fig.5  Gas-phase hydrogen permeation curves of X80 pipeline steel with different hydrogen doping ratios
Hydrogen blending ratio / %P / MPaD / m2·s-1Φ / mol·m-1·s-1·MPa-0.5
100.6251.19 × 10-106.43 × 10-11
301.8631.21 × 10-101.17 × 10-10
503.0061.21 × 10-101.99 × 10-10
Table 2  Kinetic parameters of gas-phase hydrogen permeation in X80 pipeline steel with different hydrogen doping ratios
Fig.6  Hydrogen permeation curves of X80 pipeline steel in gas phase at different temperatures
T / KP / MPaD / m2·s-1Φ / mol·m-1·s-1·MPa-0.5ΔHD / kJ·mol-1ΔHP / kJ·mol-1
2980.6251.19 × 10-106.43 × 10-111.5611.25
3230.6211.23 × 10-108.82 × 10-11
3480.6181.31 × 10-101.12 × 10-10
3730.6251.38 × 10-101.59 × 10-10
Table 3  Kinetic parameters of gas-phase hydrogen permeation in X80 pipeline steel under different temperature conditions
Fig.7  Hydrogen content test results of X80 pipeline steel
1 Liu C W, Pei Y B, Han H, et al. Research status and development trend of hydrogen energy industry chain and the storage and transportation technologies [J]. Oil Gas Storage Transp., 2022, 41: 498
刘翠伟, 裴业斌, 韩 辉 等. 氢能产业链及储运技术研究现状与发展趋势 [J]. 油气储运, 2022, 41: 498
2 Li J F, Su Y, Zhang H, et al. Research progresses on pipeline transportation of hydrogen-blended natural gas [J]. Nat. Gas Ind., 2021, 41(4): 137
李敬法, 苏 越, 张 衡 等. 掺氢天然气管道输送研究进展 [J]. 天然气工业, 2021, 41(4): 137
3 National Energy Administration. Hydrogen energy industry development medium and long-term plan (2021-2035) [EB/OL].
国家能源局. 氢能产业发展中长期规划(2021-2035年) [EB/OL].
4 Cao Q, Wang H J, Qin Y M, et al. Current status and analysis of the development of pure hydrogen pipeline hydrogen transmission technology [J]. Mech. Eng., 2024, 46: 18
曹 权, 王洪建, 秦业美 等. 纯氢管道输氢技术发展现状与分析 [J]. 力学与实践, 2024, 46: 18
5 Li F, Dong S H, Chen L, et al. Key safety technologies and advances in long-distance pipeline transportation of hydrogen blended natural gas [J]. Mech. Eng., 2023, 45: 230
李 凤, 董绍华, 陈 林 等. 掺氢天然气长距离管道输送安全关键技术与进展 [J]. 力学与实践, 2023, 45: 230
6 Sun Y H, Cheng Y F. Thermodynamics of spontaneous dissociation and dissociative adsorption of hydrogen molecules and hydrogen atom adsorption and absorption on steel under pipelining conditions [J]. Int. J. Hydrog. Energy, 2021, 46: 34469
7 Li X, Wei B X, Lu Y H, et al. Research progress on hydrogen damage mechanism of pipeline steel in contact with hydrogen environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1125
李 鑫, 韦博鑫, 鲁仰辉 等. 临氢环境下管线钢氢损伤机理研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 1125
8 Shang J, Lu Y H, Zheng J Y, et al. Research status-in-situ and key challenges in pipeline transportation of hydrogen-natural gas mixtures [J]. Chem. Ind. Eng. Prog., 2021, 40: 5499
尚 娟, 鲁仰辉, 郑津洋 等. 掺氢天然气管道输送研究进展和挑战 [J]. 化工进展, 2021, 40: 5499
9 Golisch G, Genchev G, Wanzenberg E, et al. Application of line pipe and hot induction bends in hydrogen gas [J]. J. Pip. Sci. Eng., 2022, 2: 100067
10 Carneiro A R, Ratnapuli C R, de Freitas Cunha Lins V. The influence of chemical composition and microstructure of API linepipe steels on hydrogen induced cracking and sulfide stress corrosion cracking [J]. Mater. Sci. Eng., 2003, 357A: 104
11 Cheng Y F. Essence and gap analysis for hydrogen embrittlement of pipelines in high-pressure hydrogen environments [J]. Oil Gas Storage Transp., 2023, 42: 1
程玉峰. 高压氢气管道氢脆问题明晰 [J]. 油气储运, 2023, 42: 1
12 Gao R Z, Xing B H, Yang C, et al. Synergic effects of temperature and pressure on the hydrogen diffusion and dissolution behaviour of X80 pipeline steel [J]. Corros. Sci., 2024, 240: 112468
13 Wu X, Teng M J, Jia W L, et al. Study on the mechanical properties of X80 pipeline steel under pre-charged high-pressure gaseous hydrogen [J]. Int. J. Hydrog. Energy, 2024, 84: 39
14 Shang J, Guo J X, Hua Z L, et al. Effects of plastic deformation on hydrogen trapping and hydrogen distribution in X80 pipeline steel [J]. Int. J. Hydrog. Energy, 2024. DOI: 10.1016/j.ijhydene.2023.12.272
15 Jiang Q M, Wang Q, Xie P, et al. Development status and analysis of long-distance hydrogen pipeline at home and abroad [J]. Oil-Gas Field Surf. Eng., 2019, 38(12): 6
蒋庆梅, 王 琴, 谢 萍 等. 国内外氢气长输管道发展现状及分析 [J]. 油气田地面工程, 2019, 38(12): 6
16 CommissionEuropean. A hydrogen strategy for a climate-neutral Europe: COM(2020)301 [R]. Brussel: European Union, 2020
17 Yao C, Chen J, Ming H L, et al. Research progress on hydrogen permeability behavior of pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 209
姚 婵, 陈 健, 明洪亮 等. 管线钢氢渗透行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 209
18 Liu F, Yang H W, Deng F J. Research on hydrogen embrittlement behavior of X52 pipeline steel for hydrogen doped natural gas transportation [J]. Petrol. New Energy, 2024, 36(3): 30
刘 方, 杨宏伟, 邓付洁. 掺氢天然气输送用X52管线钢的氢脆行为研究 [J]. 油气与新能源, 2024, 36(3): 30
19 Xu X S, Zhang R, Wang C L, et al. Experimental study on the temperature dependence of gaseous hydrogen permeation and hydrogen embrittlement susceptibility of X52 pipeline steel [J]. Eng. Fail. Anal., 2024, 155: 107746
20 Wei H T, Duan B Q, Shi X S, et al. Influence of hydrogen in natural gas mixed hydrogen environment on mechanical properties of X80 pipeline steel [J]. Int. J. Hydrog. Energy, 2024, 54: 908
21 Guo S W, Wu H Z, Dong S H, et al. Simulation of hydrogen distribution in pipeline with double corrosion defects [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 335
郭诗雯, 吴浩志, 董绍华 等. 含双腐蚀缺陷管道的氢浓度分布模拟 [J]. 中国腐蚀与防护学报, 2024, 44: 335
doi: 10.11902/1005.4537.2023.333
22 Elaoud S, Abdulhay B, Hadj-Taieb E. Effect of hydrogen injection into natural gas on the mechanical strength of natural gas pipelines during transportation [J]. Arch. Mech., 2014, 66: 269
23 Zhou X, Wu D K, Cheng X, et al. Research progress of detection techniques for permeated hydrogen [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1203
周 欣, 吴大康, 成 旭 等. 渗透氢检测方法研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1203
24 Meng B, Gu C H, Zhang L, et al. Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures [J]. Int. J. Hydrog. Energy, 2017, 42(11): 7404
25 Xiong L Y, Liu S, Wang L B, et al. Microstructures and hydrogen permeation characteristics of Nb-Ti-Ni alloys [J]. Acta Metall. Sin., 2008, 44: 781
熊良银, 刘 实, 王隆保 等. Nb-Ti-Ni合金的显微组织与氢渗透性能 [J]. 金属学报, 2008, 44: 781
26 Liu C W, Yang H C, Wang C L, et al. Effects of CH4 and CO on hydrogen embrittlement susceptibility of X80 pipeline steel in hydrogen blended natural gas [J]. Int. J. Hydrog. Energy, 2023, 48: 27766
27 Xu Z Y, Zhang P Y, Meng G Z. Review of studies on metal hydrogen permeation [J]. Surf. Technol., 2019, 48(11): 45
徐政一, 张鹏远, 孟国哲. 金属氢渗透研究综述 [J]. 表面技术, 2019, 48(11): 45
28 Liu W C, Wei B X, Yin H, et al. Finite element analysis of hydrogen permeation in X80 pipeline with corrosion defects under axial strain [J]. Surf. Technol., 2024, 53(8): 84
刘韦辰, 韦博鑫, 尹 航 等. 轴向应变作用下含腐蚀缺陷X80管道氢渗透的有限元分析 [J]. 表面技术, 2024, 53(8): 84
29 Castaño Rivera P, Ramunni V P, Bruzzoni P. Hydrogen trapping in an API 5L X60 steel [J]. Corros. Sci., 2012, 54: 106
30 Wang H, Zhao H M, Chen H, et al. Effect of hydrogen traps on the determination of hydrogen diffusion coefficients in hydrogen-sensitive steels [J]. Trans. Mater. Heat Treat., 2016, 37(4): 236
王 洪, 赵和明, 陈 辉 等. 氢陷阱对临氢钢氢扩散系数测定的影响 [J]. 材料热处理学报, 2016, 37(4): 236
31 He P F, Zhao S W, Li W X. Research progress on fatigue damage of pre-charged hydrogen metals [J]. J. Tongji Univ. (Nat. Sci.), 2024, 52: 1118
贺鹏飞, 赵晟炜, 李文晓. 预充氢金属疲劳损伤研究进展 [J]. 同济大学学报(自然科学版), 2024, 52: 1118
[1] ZHAO Jie, XU Guangxu, ZHANG Hongwei, LI Jingfa, LV Ran, WANG Jialong, YAN Donglei. Coupling Effect of Hydrogen Embrittlement and Corrosion of X80 Pipeline Steel in Hydrogen-doped Natural Gas[J]. 中国腐蚀与防护学报, 2025, 45(2): 407-415.
[2] ZHANG Huiyun, ZHENG Liuwei, LIANG Wei. Effect of Annealing Process on Microstructure Evolution and Hydrogen Embrittlement Behavior of 304 Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 438-448.
[3] CHEN Kai, DU Yifan, XU Haoyun, LV Liang, DANG Guiming, WANG Yujin, ZHENG Shuqi. Hydrogen Permeation and Hydrogen Embrittlement Sensitivity of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
[4] LI Xincheng, LI Zhaonan, WANG Haifeng, XU Yunze, WANG Mingyu, ZHEN Xingwei. Hydrogen Embrittlement Sensitivity for Welded Structural Parts of DH36 Marine Engineering Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 416-422.
[5] CUI Bolun, ZHAO Jie, LV Ran, LI Jingfa, YU Bo, YAN Donglei. Research Progress in Composite Protection Technology Against Hydrogen-embrittlement and -corrosion for Hydrogen-blended Natural Gas Pipeline[J]. 中国腐蚀与防护学报, 2025, 45(2): 327-337.
[6] WANG Mingyang, XIA Da-Hai. Research Progress on Hydrogen Embrittlement Mechanism of High Strength Al-alloy[J]. 中国腐蚀与防护学报, 2025, 45(2): 261-270.
[7] ZHANG Qianru, SUN Qingqing. Hydrogen Enhanced Localized Plasticity: A Critical Review[J]. 中国腐蚀与防护学报, 2025, 45(2): 271-282.
[8] WAN Hongjiang, MING Hongliang, WANG Jianqiu, HAN En-Hou. Effect of Small Amount of O2 and CO on Hydrogen Embrittlement Susceptibility of X52 Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 371-380.
[9] CHENG Kaiyuan, PENG Yang, HUANG Feng, CHENG Xianglong, XU Yunfeng, PENG Zhixian, LIU Jing. Adaptability of Typical Seamless Tube Steels to Hydrogen-blended Natural Gas Environments and Hydrogen- induced Damage Mechanism[J]. 中国腐蚀与防护学报, 2025, 45(2): 397-406.
[10] WANG Yali, GUAN Fang, DUAN Jizhou, ZHANG Lina, YANG Zhengxian, HOU Baorong. Synergistic Inhibition of Rhamnolipid and 2, 2-dibromo-3-hypoazopropionamide on Microbiologically Influenced Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1412-1422.
[11] LI Xin, WEI Boxin, LU Yanghui, SUN Chen, YU Wentao, XU Meng, LIU Wei. Research Progress on Hydrogen Damage Mechanism of Pipeline Steel in Contact with Hydrogen Environment[J]. 中国腐蚀与防护学报, 2024, 44(5): 1125-1133.
[12] XU Yunfeng, WANG Shaofeng, HE Long, LIU Dong, HUANG Feng, LIU Jing. Effect of Eco Pickled Surface Treatment on Hydrogen Embrittlement Sensitivity of QStE700TM Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 691-699.
[13] WANG Yanfei, LI Yaozhou, HUANG Yuting, XIE Honglin, WU Weijie. Effect of Grain Size on Hydrogen Embrittlement of 304L Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 494-506.
[14] WANG Zhen, LIU Jing, ZHANG Shiqi, HUANG Feng. Effect of Strain Rate on Hydrogen Embrittlement Susceptibility of DP780 Steel with Hydrogen Pre-charging[J]. 中国腐蚀与防护学报, 2022, 42(1): 106-112.
[15] ZHANG Huiyun, ZHENG Liuwei, MENG Xianming, LIANG Wei. Effect of Electrochemical Hydrogen Charging on Hydrogen Embrittlement Sensitivity of Cr15 Ferritic and 304 Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
No Suggested Reading articles found!