Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (2): 371-380    DOI: 10.11902/1005.4537.2024.159
Current Issue | Archive | Adv Search |
Effect of Small Amount of O2 and CO on Hydrogen Embrittlement Susceptibility of X52 Pipeline Steel
WAN Hongjiang1,2, MING Hongliang1,2(), WANG Jianqiu1, HAN En-Hou1,3
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.Institute of Corrosion Science and Technology, Guangzhou 510530, China
Cite this article: 

WAN Hongjiang, MING Hongliang, WANG Jianqiu, HAN En-Hou. Effect of Small Amount of O2 and CO on Hydrogen Embrittlement Susceptibility of X52 Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 371-380.

Download:  HTML  PDF(33701KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of small injected amount of O2 and CO on the hydrogen embrittlement susceptibility of X52 pipeline steel in pure gaseous hydrogen was investigated by slow strain rate tensile tests, while the fracture of the tested steel was characterized by scanning electron microscope. Results reveal that the hydrogen embrittlement susceptibility of X52 pipeline steel decreases with the increase of the injected amount of O2 and CO in the gaseous hydrogen. For the gaseous hydrogen with either 0.01% (volume fraction) O2 or 0.02% (volume fraction) CO, the acquired hydrogen embrittlement index of X52 pipeline steel is 0.83% and 8.11%, which correspond to 3.96% and 38.66% those in pure gaseous hydrogen, respectively. It follows that the competitive adsorption of O2 and CO with the presence of H2 leads to the reduction of hydrogen embrittlement sensitivity of the pipeline steel.

Key words:  X52 pipeline steel      hydrogen embrittlement      O2      CO      competitive adsorption     
Received:  21 May 2024      32134.14.1005.4537.2024.159
TG172  
Fund: National Key R&D Program of China(2021YFB4001601);Youth Innovation Promotion Association CAS(2022187)
Corresponding Authors:  MING Hongliang, E-mail: hlming12s@imr.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.159     OR     https://www.jcscp.org/EN/Y2025/V45/I2/371

Fig.1  Schematic diagram of dimensions of tubular specimen
NumberGas typePressure / MPaCharging time / h
1H2448
2CH440
3H2 + 0.001%O2448
4H2 + 0.005%O2448
5H2 + 0.01%O2448
6H2 + 0.005%CO448
7H2 + 0.01%CO448
8H2 + 0.02%CO448
Table 1  Tensile test conditions in H2 gas containing different contents of O2 and CO
Fig.2  Metallography images of X52 pipeline steel in the planes of TD-RD (a), TD-ND (b) and RD-ND (c), and image position diagram (d)
Fig.3  Stress-strain curves of X52 pipeline steel in H2 atmospheres containing different contents of oxygen
Fig.4  Tensile data (a) and HEI (b) of X52 pipeline steel in H2 atmospheres with different oxygen contents
Fig.5  Overall fracture morphologies of X52 pipeline steel in H2 atmospheres containing 0% (a), 0.001% (b), 0.005% (c), and 0.01% (d) O2
Fig.6  Fracture morphologies of X52 pipeline steel in H2 atmosphere containing 0.001%O2: (a) overview, (b-d) magnified images of the regions A, B and C marked in Fig.6a, respectively
Fig.7  Fracture morphologies of X52 pipeline steel in H2 atmosphere containing 0.005%O2: (a) overview, (b-d) magnified images of the regions A, B and C marked in Fig.7a, respectively
Fig.8  Fracture morphologies of X52 pipeline steel in H2 atmosphere containing 0.01%O2: (a) overview, (b-d) magnified images of the regions A, B and C marked in Fig.8a, respectively
Fig.9  Stress-strain curves of X52 pipeline steel in H2 atmospheres containing different contents of CO
Fig.10  Tensile data (a) and HEI (b) of X52 pipeline steel in H2 atmospheres containing different contents of CO
Fig.11  Overall fracture morphologies of X52 pipeline steel in H2 atmospheres containing 0% (a), 0.005% (b), 0.01% (c) and 0.02% (d) CO
Fig.12  Fracture morphologies of X52 pipeline steel in H2 atmosphere containing 0.005%CO: (a) overview, (b-d) magnified images of the regions A, B, and C marked in Fig.12a, respectively
Fig.13  Fracture morphologies of X52 pipeline steel in H2 atmosphere containing 0.01%CO: (a) general view, (b-d) magnified images of the regions A, B, and C marked in Fig.13a, respectively
Fig.14  Fracture morphologies of X52 pipeline steel in H2 atmosphere containing 0.02%CO: (a) general view, (b-d) magnified images of the regions A, B, and C marked in Fig.14a, respectively
1 Cheng M F. Study on hydrogen energy supply potential in China from perspective of renewable energy utilization and in-dustrial by-product hydrogen resources [J]. Shanghai Energy Conserv., 2022, (7): 785
成鸣峰. 从可再生能源利用和工业副产氢资源情况看我国氢能供给潜力 [J]. 上海节能, 2022, (7): 785
2 Chiari L, Zecca A. Constraints of fossil fuels depletion on global warming projections [J]. Energy Policy, 2011, 39: 5026
3 Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future [J]. Nature, 2012, 488: 294
4 Abe J O, Popoola A P I, Ajenifuja E, et al. Hydrogen energy, economy and storage: review and recommendation [J]. Int. J. Hydrog. Energy, 2019, 44: 15072
5 Miao B, Giordano L, Chan S H. Long-distance renewable hydrogen transmission via cables and pipelines [J]. Int. J. Hydrog. Energy, 2021, 46: 18699
6 Yao C, Chen J, Ming H L, et al. Research progress on hydrogen permeability behavior of pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 209
姚 婵, 陈 健, 明洪亮 等. 管线钢氢渗透行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 209
7 Li J F, Su Y, Zhang H, et al. Research progresses on pipeline transportation of hydrogen-blended natural gas [J]. Nat. Gas Ind., 2021, 41(4): 137
李敬法, 苏 越, 张 衡 等. 掺氢天然气管道输送研究进展 [J]. 天然气工业, 2021, 41(4): 137
8 Abd A A, Naji S Z, Hashim A S. Effects of non-hydrocarbons impurities on the typical natural gas mixture flows through a pipeline [J]. J. Nat. Gas Sci. Eng., 2020, 76: 103218
9 Wang C L, Xu X S, Hua Y, et al. Inhibiting effect of carbon monoxide on gaseous hydrogen embrittlement of pipelines transporting hydrogen [J]. Corros. Sci., 2024, 227: 111789
10 Ogawa T, Yokoyama K, Asaoka K, et al. Effects of moisture and dissolved oxygen in methanol and ethanol solutions containing hydrochloric acid on hydrogen absorption and desorption behaviors of Ni-Ti superelastic alloy [J]. Mater. Sci. Eng., 2006, 422A: 218
11 Faramawy S, Zaki T, Sakr A A E. Natural gas origin, composition, and processing: a review [J]. J. Nat. Gas Sci. Eng., 2016, 34: 34
12 Frandsen J D, Marcus H L. Environmentally assisted fatigue crack propagation in steel [J]. Metall. Trans., 1977, 8A: 265
13 Liu C W, Yang H C, Wang C L, et al. Effects of CH4 and CO on hydrogen embrittlement susceptibility of X80 pipeline steel in hydrogen blended natural gas [J]. Int. J. Hydrog. Energy, 2023, 48: 27766
14 Komoda R, Yamada K, Kubota M, et al. The inhibitory effect of carbon monoxide contained in hydrogen gas environment on hydrogen-accelerated fatigue crack growth and its loading frequency dependency [J]. Int. J. Hydrog. Energy, 2019, 44: 29007
15 Komoda R, Kubota M, Staykov A, et al. Inhibitory effect of oxygen on hydrogen-induced fracture of A333 pipe steel [J]. Fatigue Fract. Eng. Mater. Struct., 2019, 42: 1387
16 Du J W, Ming H L, Wang J Q. Research status and progress of hydrogen embrittlement of hydrogen pipelines [J]. Oil Gas Storage Transp., 2023, 42: 1107
杜建伟, 明洪亮, 王俭秋. 输氢管道氢脆研究现状及进展 [J]. 油气储运, 2023, 42: 1107
17 Wan H J, Wu X Q, Ming H L, et al. Effects of hydrogen charging time and pressure on the hydrogen embrittlement susceptibility of X52 pipeline steel material [J]. Acta Metall. Sin. (Engl. Lett.), 2024, 37: 293
18 Kussmaul K, Deimel P, Fischer H, et al. Fracture mechanical behaviour of the steel 15 MnNi 6 3 in argon and in high pressure hydrogen gas with admixtures of oxygen [J]. Int. J. Hydrog. Energy, 1998, 23: 577
19 Staykov A, Yamabe J, Somerday B P. Effect of hydrogen gas impurities on the hydrogen dissociation on iron surface [J]. Int. J. Quantum Chem., 2014, 114: 626
20 Somerday B P, Sofronis P, Nibur K A, et al. Elucidating the variables affecting accelerated fatigue crack growth of steels in hydrogen gas with low oxygen concentrations [J]. Acta Mater., 2013, 61: 6153
21 Sun Y H, Cheng Y F. Thermodynamics of spontaneous dissociation and dissociative adsorption of hydrogen molecules and hydrogen atom adsorption and absorption on steel under pipelining conditions [J]. Int. J. Hydrog. Energy, 2021, 46: 34469
22 Moritz W, Imbihl R, Behm R J, et al. Adsorption geometry of hydrogen on Fe(110) [J]. J. Chem. Phys., 1985, 83(4): 1959
23 Hammer L, Landskron H, Nichtl-Pecher W, et al. Hydrogen-induced restructuring of close-packed metal surfaces: H/Ni(111) and H/Fe(110) [J]. Phys. Rev., 1993, 47B: 15969
24 Walch S P. Model studies of the interaction of h atoms with bcc iron [J]. Surf. Sci., 1984, 143: 188
[1] ZHAO Jie, XU Guangxu, ZHANG Hongwei, LI Jingfa, LV Ran, WANG Jialong, YAN Donglei. Coupling Effect of Hydrogen Embrittlement and Corrosion of X80 Pipeline Steel in Hydrogen-doped Natural Gas[J]. 中国腐蚀与防护学报, 2025, 45(2): 407-415.
[2] LIU Tianle, WEI Boxin, FU Anqing, SU Hang, CHEN Tingshu, WANG Chaoming, WANG Sui. Hydrogen Damage of X80 Pipeline Steel in Hydrogen-doped Gaseous Atmosphere[J]. 中国腐蚀与防护学报, 2025, 45(2): 423-430.
[3] MIAO Hao, YIN Chenghui, WANG Honglun, GAO Yihui, CHEN Junhang, ZHANG Hao, LI Bo, WU Junsheng, XIAO Kui. Correlation of Laboratory Simulation Test and Field Exposure Test for Three Stainless Steels in Polluted Marine Atmosphere of Qingdao Coastal Area[J]. 中国腐蚀与防护学报, 2025, 45(2): 449-459.
[4] JIANG Huifang, LIU Yanghao, LIU Ying, LI Yingchao, YU Haobo, ZHAO Bo, CHEN Xi. Mechanism of Microbial Corrosion of J55 Steel in Hydrogen-containing Environments in Underground Hydrogen Storage Facilities[J]. 中国腐蚀与防护学报, 2025, 45(2): 347-358.
[5] ZHANG Huiyun, ZHENG Liuwei, LIANG Wei. Effect of Annealing Process on Microstructure Evolution and Hydrogen Embrittlement Behavior of 304 Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 438-448.
[6] CHEN Kai, DU Yifan, XU Haoyun, LV Liang, DANG Guiming, WANG Yujin, ZHENG Shuqi. Hydrogen Permeation and Hydrogen Embrittlement Sensitivity of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
[7] LI Xincheng, LI Zhaonan, WANG Haifeng, XU Yunze, WANG Mingyu, ZHEN Xingwei. Hydrogen Embrittlement Sensitivity for Welded Structural Parts of DH36 Marine Engineering Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 416-422.
[8] CUI Bolun, ZHAO Jie, LV Ran, LI Jingfa, YU Bo, YAN Donglei. Research Progress in Composite Protection Technology Against Hydrogen-embrittlement and -corrosion for Hydrogen-blended Natural Gas Pipeline[J]. 中国腐蚀与防护学报, 2025, 45(2): 327-337.
[9] JIN Zhenting, SONG Qining, LIU Qi, PENG Chunlan, XU Nan, LU Qiqing, BAO Yefeng, ZHAO Lijuan, ZHAO Jianhua. Long-term Corrosion Behavior of Three Cu-alloys in 3.5%NaCl Solutions with Different pH Values[J]. 中国腐蚀与防护学报, 2025, 45(2): 506-514.
[10] ZHAI Xiwei, LIU Shiyi, WANG Li, JIA Ruiling, ZHANG Huixia. Effect of Applied Load on Corrosion Behavior of 5383 Al-alloy Welded Joints[J]. 中国腐蚀与防护学报, 2025, 45(2): 515-522.
[11] LEI Aijia, DAI Xun, XU Jiangtao, DENG Ruiju, HUANG Xuefei. Optimization of Heat Treatment Process and Corrosion Performance in High-temperature and High-pressure of Zr-1.35Sn-0.22Fe-0.13Cr-0.05Ni Alloy[J]. 中国腐蚀与防护学报, 2025, 45(2): 497-505.
[12] WU Yuhang, CHEN Xu, WANG Shoude, LIU Chang, LIU Jie. Stress Corrosion Behavior of X70 Steel in an Artificial Near-neutral Soil Solution Under Direct Current[J]. 中国腐蚀与防护学报, 2025, 45(2): 489-496.
[13] ZHENG Wenpei, LIU Yingzheng, ZHANG Yaru, ZHOU Taotao, LI Xingtao, YU Shengyang, JIANG Lumeng. An Integrated Corrosion Rate Prediction Model Based on Global and Local Error Fusion: A Robust Optimization Strategy[J]. 中国腐蚀与防护学报, 2025, 45(2): 523-532.
[14] WANG Mingyang, XIA Da-Hai. Research Progress on Hydrogen Embrittlement Mechanism of High Strength Al-alloy[J]. 中国腐蚀与防护学报, 2025, 45(2): 261-270.
[15] BAI Zhengqing, NONG Jing, WEI Shichen, XU Jian. Effect of Pre-charging Hydrogen on Corrosion Behavior of Ni-Cr Alloy in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2025, 45(2): 338-346.
No Suggested Reading articles found!