Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (2): 431-437    DOI: 10.11902/1005.4537.2024.069
Current Issue | Archive | Adv Search |
Effect of Hydrogen on Crevice Corrosion Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution
TANG Yixin1, ZHANG Fei2, CUI Zhongyu1, CUI Hongzhi1, LI Yizhou1()
1.Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
2.China Nuclear Power Operation Technology Corporation, Wuhan 430074, China
Cite this article: 

TANG Yixin, ZHANG Fei, CUI Zhongyu, CUI Hongzhi, LI Yizhou. Effect of Hydrogen on Crevice Corrosion Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 431-437.

Download:  HTML  PDF(11890KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of cathodically hydrogen charging on the crevice corrosion behavior of 2205 duplex stainless steel in 3.5%NaCl solution was investigated by means of measurements of potentiodynamic polarization, Mott-Schottky, and potentiostatic polarization, as well as scanning electron microscopy (SEM) and confocal laser microscopy (CLSM). The results show that the defect density of the passive film on the surface of 2205 duplex stainless steel increases, and the pitting potential decreases significantly with the increased hydrogen charging time. This results in the decrease of the critical crevice corrosion potential and the increased crevice corrosion susceptibility. The pitting corrosion and the striped corrosion inside the crevice is observed for the specimen without hydrogen charging. However, for the specimen with hydrogen charging, the grooved corrosion at the crevice mouth is observed at the high polarized potential, and the pitting corrosion inside crevice founded at the low polarized potential.

Key words:  2205 duplex stainless steel      cathodic polarization      potentiostatic polarization      crevice corrosion     
Received:  05 March 2024      32134.14.1005.4537.2024.069
TG174  
Fund: National Natural Science Foundation of China(51901217)
Corresponding Authors:  LI Yizhou, E-mail: liyizhou@ouc.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.069     OR     https://www.jcscp.org/EN/Y2025/V45/I2/431

Fig.1  Metallurgical microstructure of 2205 duplex stain-less steel
Fig.2  Schematic diagram of crevice corrosion test device (a), and cross-sectional view (b) and fixation (c) of specimen
Fig.3  Potentiodynamic polarization curves of 2205 duplex stainless steel in 3.5%NaCl solution after hydrogen charging for different time (a), and their corresponding pitting breakdown potentials (Ebp) and passivation current densities (Ip) (b)
Fig.4  Mott-Schottky plots of the passive films formed on 2205 duplex stainless steel in 3.5%NaCl solution after hydrogen charging for different time: (a) Mott-Schottky plots, (b) carrier density
Fig.5  Potentiostatic polarization curves of 2205 duplex stainless steel after hydrogen charging in 3.5%NaCl solution under different polarization potentials for 0 h (a), 2 h (b) and 6 h (c), and corresponding critical potentials of crevice corrosion (d)
Fig.6  Surface morphologies (a, d, g) and corrosion zone profiles (b, c, e, f, h, i) of uncharged 2205 duplex stainless steel after polarization in 3.5%NaCl solution at the constant potentials of 450 mV (a-c), 500 mV (d-f), 1000 mV (g-i)
Fig.7  Surface morphologies (a, d, g) and corrosion zone profiles (b, c, e, f, h, i) of 2205 duplex stainless steel with 2 h hydrogen charging after polarization in 3.5%NaCl solution for 4 h at the potentials of -300 mV (a-c), -150 mV (d-f), 0 V (g-i)
Fig.8  Surface morphologies (a, d, g) and corrosion zone profiles (b, e, h) of 2205 duplex stainless steel with 6 h hydrogen charging after polarization in 3.5%NaCl solution for 4 h at the potentials of 0 V (a-c), -300 mV (d-f), -450 mV (g-i)
1 Wang R. Precipitation of sigma phase in duplex stainless steel and recent development on its detection by electrochemical potentiokinetic reactivation: A review[J]. Corros. Commun., 2021, 2: 41
2 Wang L, Ding Y, Lu Q, et al. Microstructure and corrosion behavior of welded joints between 2507 super duplex stainless steel and E690 low alloy steel [J]. Corros. Commun., 2023, 11: 1
3 Huang J Z, Huang T, Yang L J, et al. Electrochemical properties and offshore corrosion behavior of SAF 2304 duplex stainless steel[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 630
黄家针, 黄 涛, 杨丽景 等. SAF 2304双相不锈钢电化学性能及其近海腐蚀行为 [J]. 中国腐蚀与防护学报, 2023, 43: 630
doi: 10.11902/1005.4537.2022.217
4 Wang X T, Chen X, Han Z Z, et al. Stress corrosion cracking behavior of 2205 duplex stainless steel in 3.5%NaCl solution with sulfate reducing bacteria [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 43
王欣彤, 陈 旭, 韩镇泽 等. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 43
doi: 10.11902/1005.4537.2019.268
5 Peng Q J, Zhang Z M, Wang J Q, et al. Influence of dissolved hydrogen on oxidation of stainless steel 316L in simulated pwr primary water [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 217
彭青姣, 张志明, 王俭秋 等. 溶解氢对316L不锈钢在模拟压水堆一回路水中氧化行为的影响 [J]. 中国腐蚀与防护学报, 2012, 32: 217
6 Zhang H Y, Zheng L W, Meng X M, et al. Effect of electrochemical hydrogen charging on hydrogen embrittlement sensitivity of Cr15 ferritic and 304 austenitic stainless steels [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 202
张慧云, 郑留伟, 孟宪明 等. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响 [J]. 中国腐蚀与防护学 报, 2021, 41: 202
7 Okayasu M, Fujiwara T. Effects of microstructural characteristics on the hydrogen embrittlement characteristics of austenitic, ferritic, and γ-α duplex stainless steels [J]. Mat. Sci. Eng. A-Struct., 2021, 807: 140851
8 Zhang X S, Wang S J, Wang X, et al. The stress corrosion cracking behavior of N80 carbon steel under a crevice in an acidic solution containing different concentrations of NaCl [J]. Corros. Sci., 2023, 216: 111068
9 Li W, Cao R, Xu L, et al. The role of hydrogen in the corrosion and cracking of steels-a review [J]. Corros. Commun., 2021, 4: 23
10 Tong H S, Sun Y H, Su Y J, et al. Investigation on hydrogen-induced cracking behavior of 2205 duplex stainless steel used for marine structure [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 130
童海生, 孙彦辉, 宿彦京 等. 海工结构用2205双相不锈钢氢致开裂行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 130
doi: 10.11902/1005.4537.2017.212
11 Yao J, Dong C, Man C, et al. The electrochemical behavior and characteristics of passive film on 2205 duplex stainless steel under various hydrogen charging conditions [J]. Corrosion, 2016, 72: 42
12 Yao Y, Qiao L J, Volinsky A A. Hydrogen effects on stainless steel passive film fracture studied by nanoindentation[J]. Corros. Sci., 2011, 53: 2679
13 Wu C, Wang Z, Zhang Z, et al. Influence of crevice width on sulfate-reducing bacteria (SRB)-induced corrosion of stainless steel 316L [J]. Corros. Commun., 2021, 4: 33
14 Han D, Jiang Y M, Shi C, et al. Effect of temperature, chloride ion and pH on the crevice corrosion behavior of SAF 2205 duplex stainless steel in chloride solutions [J]. J. Mater. Sci., 2012, 47: 1018
15 Aoyama T, Sugawara Y, Muto I, et al. In situ monitoring of crevice corrosion morphology of type 316L stainless steel and repassivation behavior induced by sulfate ions [J]. Corros. Sci., 2017, 127: 131
16 Zhu L Y, Cui Z Y, Cui H Z, et al. The effect of applied stress on the crevice corrosion of 304 stainless steel in 3.5wt%NaCl solution [J]. Corros. Sci., 2022, 196: 110039
17 Qiao L J, Zeng Y M, Chu W Y. Effects of hydrogen on pitting susceptibility of type 310 stainless steel [J]. J. Chin. Soc. Corros. Prot., 1998: 75
乔利杰, 曾一民, 褚武扬. 氢对310不锈钢点蚀敏感性的影响 [J]. 中国腐蚀与防护学报, 1998: 75
18 Wang X Z, Luo H, Luo J L. Effects of hydrogen and stress on the electrochemical and passivation behaviour of 304 stainless steel in simulated PEMFC environment [J]. Electrochim. Acta, 2019, 293: 60
19 Zeng Y M, Qiao L J, Lin C J, et al. Effects of pre-charged hydrogen on passive film of type 310 stainless steel [J]. J. Chin. Soc. Corros. Prot., 1999: 42
曾一民, 乔利杰, 林昌健 等. 氢对310不锈钢钝化膜的影响 [J]. 中国腐蚀与防护学报, 1999: 42
20 Wallinder D, Hultquist G, Tveten B, et al. Hydrogen in chromium: influence on corrosion potential and anodic dissolution in neutral NaCl solution [J]. Corros. Sci., 2001, 43: 1267
21 Oladoye A, Osoba L. Corrosion behavior of wire arc additive manufactured and wrought 309 stainless steel in acidic solution [J]. Corros. Commun., 2022, 8: 81
22 Zhao Y, Xiong H, Li X, et al. Improved corrosion performance of selective laser melted stainless steel 316L in the deep-sea environment [J]. Corros. Commun., 2021, 2: 55
23 Zeng L, Guo X P, Zhang G A, et al. Semiconductivities of passive films formed on stainless steel bend under erosion-corrosion conditions [J]. Corros. Sci., 2018, 144: 258
24 Geringer J, MacDonald D D. Modeling fretting-corrosion wear of 316L SS against poly (methyl methacrylate) with the Point Defect Model: Fundamental theory, assessment, and outlook [J]. Electrochim. Acta, 2012, 79: 17
25 Pan Y, Sun B, Liu Z, et al. Hydrogen effects on passivation and SCC of 2205 DSS in acidified simulated seawater [J]. Corros. Sci., 2022, 208: 110640
26 Abdulsalam M I. The role of electrolyte concentration on crevice corrosion of pure nickel [J]. Mater. Corros., 2007, 58: 511
[1] XU Zhiyu, HU Qian, HUANG Feng, LIU Jing, LU Xianzhong. Effect of Crevice Geometry on Chemical Environment of Crevice Solution and Corrosion Behavior of 2205 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1581-1588.
[2] QIAO Ze, LI Qingquan, LIU Xiaohang, LI Yizhou. Effect of Nitrate and Galvanic Couple on Crevice Corrosion Behavior of 7075-T651 Al-alloy in Neutral NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(4): 1047-1054.
[3] LIU Zhe, DENG Chengman, WEI Junsheng, XIA Da-Hai. Fast Evaluation of Resistance to High Temperature Steam Sterilization Process for Organic Coating Coated Tinplate by Electrochemical Method[J]. 中国腐蚀与防护学报, 2024, 44(4): 883-890.
[4] PEI Yingying, GUAN Fang, DONG Xucheng, ZHANG Ruiyong, DUAN Jizhou, HOU Baorong. Effect of Desulfovibrio Bizertensis SY-1 on Corrosive Behavior of Metal Materials Under Cathodic Polarization[J]. 中国腐蚀与防护学报, 2024, 44(2): 345-354.
[5] YUAN Yu, XIANG Yong, LI Chen, ZHAO Xuehui, YAN Wei, YAO Erdong. Research Progress on Corrosion of CO2 Injection Well Tubing in CCUS System[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
[6] LI Min, HU Lingyue, HU Kefeng, SONG Yao, ZHANG Zequn, LI Zongxin, ZHANG Bowei, DONG Chaofang, WU Junsheng. Crevice Corrosion Behavior of 316L Stainless Steel in Deep-sea Environment[J]. 中国腐蚀与防护学报, 2023, 43(6): 1375-1382.
[7] LYU Zhengping, LI Yuan, LIU Xiaohang, CUI Zhongyu, CUI Hongzhi, WANG Xin, PANG Kun, LI Yizhou. Synergistic Inhibition Effect of Thiourea and Sodium Nitrate on Crevice Corrosion of 7075 Al-alloy in Acidic Sodium Chloride Solution[J]. 中国腐蚀与防护学报, 2023, 43(6): 1367-1374.
[8] WANG Changgang, DANIEL Enobong Felix, LI Chao, DONG Junhua, YANG Hua, ZHANG Dongjiu. Corrosion Mechanisms of Carbon Steel- and Stainless Steel-bolt Fasteners in Marine Environments[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[9] BAI Yihan, ZHANG Hang, ZHU Zejie, WANG Jiangying, CAO Fahe. Research Progress of Monitoring Ion Concentration Variation of Micro-areas in Corrosion Crevice Interior[J]. 中国腐蚀与防护学报, 2023, 43(4): 828-836.
[10] ZHANG Hengkang, HUANG Feng, XU Yunfeng, YUAN Wei, QIU Yao, LIU Jing. Microstructure Evolution and Electrochemical Passivation Behavior of FeCrMn1.3NiAlx High Entropy Alloys[J]. 中国腐蚀与防护学报, 2022, 42(2): 218-226.
[11] LI Zhenxin, LV Meiying, DU Min. Effect of Combined Potential Polarization on Corrosion of X65 Steel in Seawater Inoculated with Iron Oxiding Bacteria[J]. 中国腐蚀与防护学报, 2022, 42(2): 211-217.
[12] LIU Xinyi, ZHAO Yazhou, ZHANG Huan, CHEN Li. Effect of Chloride Concentration in a Simulated Concrete Pore Solution on Metastable Pitting of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[13] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[14] ZHAO Baijie, FAN Yi, LI Zhenzhen, ZHANG Bowei, CHENG Xuequn. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[15] WANG Biao,DU Nan,ZHANG Hao,WANG Shuaixing,ZHAO Qing. Accelerating Effect of Pitting Corrosion Products on Metastable Pitting Initiation and the Stable Pitting Growth of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
No Suggested Reading articles found!