Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (2): 438-448    DOI: 10.11902/1005.4537.2024.078
Current Issue | Archive | Adv Search |
Effect of Annealing Process on Microstructure Evolution and Hydrogen Embrittlement Behavior of 304 Austenitic Stainless Steel
ZHANG Huiyun1(), ZHENG Liuwei2, LIANG Wei2
1.Department of Mecharical Marfacturing Engineering, Shanxi Engineering Vocational College, Taiyuan 030009, China
2.School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Cite this article: 

ZHANG Huiyun, ZHENG Liuwei, LIANG Wei. Effect of Annealing Process on Microstructure Evolution and Hydrogen Embrittlement Behavior of 304 Austenitic Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 438-448.

Download:  HTML  PDF(26073KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of different annealing processes on microstructure evolution and hydrogen embrittlement sensitivity of 304 austenitic stainless steel was studied. The results show that after being subjected to annealing within the reverse phase of martensite transformation, the content of martensite as a rapid diffusion channel of hydrogen decreases continuously, correspondingly, the hydrogen content decreases, as a result, the hydrogen embrittlement sensitivity of the steel decreases. After annealing within the recovery and recrystallization stage, the dislocation density decreases, the fine equiaxed grains appear, the hydrogen content decreases, and thus the hydrogen embrittlement sensitivity of the steel also decreases. However, after annealing within the grain growth stage, the hydrogen content per unit area of grain boundaries increases, and the hydrogen embrittlement sensitivity of the steel increases. As a whole, after annealing treatment within the recovery and recrystallization stage, the 304 austenitic stainless steel present better comprehensive properties.

Key words:  austenitic stainless steel      anneal      inverse martensite transformation      recovery and recrystallization      hydrogen embrittlement sensitivity     
Received:  11 March 2024      32134.14.1005.4537.2024.078
TG337.5  
Fund: Science and Technology Innovation Project of Colleges and Universities in Shanxi Province(2024L592);the Project of "Unveiling the List and Taking Charge" of Shanxi Engineering Vocational College in 2024(KY2024-1);the Research Project of Teaching Reform and Practice of Vocational Education in Shanxi Province(202303022)
Corresponding Authors:  ZHANG Huiyun, E-mail: 245883278@qq.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.078     OR     https://www.jcscp.org/EN/Y2025/V45/I2/438

Fig.1  Schematic diagrams of electrochemical hydrogen charging device (a) and tensile specimen (b)
Fig.2  IPF maps (a, c, e) and phase distribution maps (b, d, f) of CR-20% (a, b), 700 oC-1 min (c, d) and 700 oC-3 min (e, f) samples
Fig.3  Stress-strain curves (a) and HE sensitivities (b) of CR-20%, 700 oC-1 min and 700 oC-3 min samples before and after hydrogen charging
Fig.4  Hydrogen desorption rates of CR-20%, 700 oC-1 min and 700 oC-3 min samples as a function of temperature
Fig.5  BC (a, c, e) and IPF (b, d, f) maps of 700 oC-5 min (a, b), 700 oC-10 min (c, d) and 800 oC-10 min (e, f) samples
Fig.6  KAM maps (a, c, e) and KAM values (b, d, f) of 700 oC-5 min (a, b), 700 oC-10 min (c, d) and 800 oC-10 min (e, f) samples
Fig.7  Recrystallization images (a, c, e) and corresponding fractions (b, d, f) of 700 oC-5 min (a, b), 700 oC-10 min (c, d) and 800 oC-10 min (e, f) samples
Fig.8  Stress-strain curves of 700 oC-5 min, 700 oC-10 min and 800 oC-10 min samples before and after hydrogen charging (a), and their HE sensitivities (b)
Fig.9  Hydrogen desorption rates of 700 oC-5 min, 700 oC-10 min and 800 oC-10 min samples as a function of temperature
Fig.10  BC maps (a, b), KAM maps (c, d), IPF maps (e, f), and grain sizes (g, h) of 900 oC-30 min (a, c, e, g) and 1000 oC-60 min (b, d, f, h) samples
Fig.11  Stress-strain curves of 900 oC-30 min and 1000 oC-60 min samples before and after hydrogen charg-ing (a), and their HE sensitivities (b)
Fig.12  Hydrogen desorption rates of 900 oC-30 min and 1000 oC-60 min samples as a function of temperature
Sampled / μmSv / m2·m-3XH / mg·kg-1XHGB / g·m-2
900 oC-30 min20.011.0 × 1055.484.3 × 10-4
1000 oC-60 min30.356.59 × 1043.914.7 × 10-4
Table 1  Summary of the grain size (d), grain boundary area per unit volume (Sv), content of diffusible hydrogen (XH), and hydrogen content per unit grain boundary area (XHGB) obtained by calculation under an assumption that all hydrogen atoms locate at grain boundaries
Fig.13  Fracture morphologies of 900 oC-30 min sample (a, c) and 1000 oC-60 min sample (b, d) after hydrogen charging
SampleYield strength / MPaTensile strength / MPaElongation / %H content / mg·kg-1HE sensitivity / %
CR-20%850 ± 71070 ± 1532.0 ± 3.020.5352.38 ± 1.5
700 oC-1 min745 ± 8960 ± 1142.6 ± 2.310.6613.61 ± 1.3
700 oC-3 min720 ± 6935 ± 1343.5 ± 1.58.6513.20 ± 0.8
700 oC-5 min670 ± 4930 ± 1645.2 ± 2.77.4911.68 ± 0.5
700 oC-10 min645 ± 3920 ± 1449.6 ± 3.86.317.41 ± 0.4
800 oC-10 min490 ± 9900 ± 1554.0 ± 2.63.626.94 ± 0.6
900 oC-30 min250 ± 8805 ± 1267.7 ± 1.55.480.74 ± 0.1
1000 oC-60 min215 ± 5725 ± 1073.3 ± 0.53.9111.08 ± 0.9
Table 2  Comparisons of various performances of 304 austenitic stainless steel in different states
1 Chen Y S, Lu H Z, Liang J T, et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates [J]. Science, 2020, 367: 171
2 Pinson M, Springer H, Depover T, et al. Qualification of the in-situ bending technique towards the evaluation of the hydrogen induced fracture mechanism of martensitic Fe-C steels [J]. Mater. Sci. Eng., 2020, 792A: 139754
3 Fan Y H. Effect of microstructures on the hydrogen embrittlement of stainless steels [D]. Shenyang: University of Science and Technology of China, 2019
范宇恒. 不锈钢微观组织结构对其氢脆性能的影响 [D]. 沈阳: 中国科学技术大学, 2019
4 Li W Y, Cao R H, Xu L N, et al. The role of hydrogen in the corrosion and cracking of steels-a review [J]. Corros. Commun., 2021, 4: 23
5 Wu X P. Effect of plastic deformation and annealing treatment on hydrogen embrittlement susceptibility of 304 austenitic stainless steel [D]. Xuzhou: China University of Mining and Technology, 2020
吴玄培. 塑性变形及退火处理对304奥氏体不锈钢氢脆敏感性影响研究 [D]. 徐州: 中国矿业大学, 2020
6 Zhang H Y, Zheng L W, Meng X M, et al. Effect of cold deformation on microstructure and hydrogen embrittlement sensitivity of 304 austenitic stainless steel [J]. Hot Work. Technol., 2021, 50(9): 61
张慧云, 郑留伟, 孟宪明 等. 冷变形对304奥氏体不锈钢组织及氢脆敏感性的影响 [J]. 热加工工艺, 2021, 50(9): 61
7 Zhao X L. Study of the susceptibility to hydrogen embrittlement of medium-Mn steel [D]. Beijing: Beijing Iron and Steel Research Institute, 2019
赵晓丽. 高强塑积中锰钢氢脆敏感性的研究 [D]. 北京: 北京钢铁研究总院, 2019
8 Jiang W, Gong J M, Wang Y F, et al. Plasticity comparison of 304L austenitic stainless steel before and after electrochemical hydrogen charging [J]. Mater. Mech. Eng., 2012, 36(2): 28
蒋 旺, 巩建鸣, 王艳飞 等. 电化学充氢前后304L 奥氏体不锈钢的塑性对比 [J]. 机械工程材料, 2012, 36(2): 28
9 Jiang Y, Gong J M, Zhou R R, et al. Effect of hydrogen on mechanical properties of 304L austenitic stainless steel [J]. Mater. Mech. Eng., 2009, 33(11): 15
姜 勇, 巩建鸣, 周荣荣 等. 氢对304L 奥氏体不锈钢力学性能的影响 [J]. 机械工程材料, 2009, 33(11): 15
10 Sun G S, Du L X, Hu J, et al. Low temperature superplastic-like deformation and fracture behavior of nano/ultrafine-grained metastable austenitic stainless steel [J]. Mater. Des., 2017, 117: 223
11 Fan Y H, Zhang B, Wang J Q, et al. Effect of grain refinement on the hydrogen embrittlement of 304 austenitic stainless steel [J]. J. Mater. Sci. Technol., 2019, 35: 2213
doi: 10.1016/j.jmst.2019.03.043
12 Zhang M, Sun G S, Qin D Y, et al. Behavior of martensite reverse transformation and austenite recrystallization of cold-rolled 304 stainless steel [J]. Heat Treat. Met., 2021, 46(7): 51
doi: 10.13251/j.issn.0254-6051.2021.07.010
张 梅, 孙国胜, 秦岽烊 等. 冷轧304不锈钢的马氏体逆相变及奥氏体再结晶行为 [J]. 金属热处理, 2021, 46(7): 51
13 Sun Q Q, Han J H, Li J X, et al. Tailoring hydrogen embrittlement resistance of pure Ni by grain boundary engineering [J]. Corros. Commun., 2022, 6: 48
14 Zhang H Y, Zheng L W, Meng X M, et al. Effect of electrochemical hydrogen charging on hydrogen embrittlement sensitivity of Cr15 ferritic and 304 austenitic stainless steels [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 202
张慧云, 郑留伟, 孟宪明 等. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 202
doi: 10.11902/1005.4537.2020.099
15 Zhu X, Zhang K, Li W, et al. Effect of retained austenite stability and morphology on the hydrogen embrittlement susceptibility in quenching and partitioning treated steels [J]. Mater. Sci. Eng., 2016, 658A: 400
16 Jedrychowski M, Tarasiuk J, Bacroix B, et al. Electron backscatter diffraction investigation of local misorientations and orientation gradients in connection with evolution of grain boundary structures in deformed and annealed zirconium. A new approach in grain boundary analysis [J]. J. Appl. Crystallogr., 2013, 46: 483
17 Bai Y, Momotani Y, Chen M C, et al. Effect of grain refinement on hydrogen embrittlement behaviors of high-Mn TWIP steel [J]. Mater. Sci. Eng., 2016, 651A: 935
18 Park C, Kang N, Liu S. Effect of grain size on the resistance to hydrogen embrittlement of API 2W Grade 60 steels using in situ slow-strain-rate testing [J]. Corros. Sci., 2017, 128: 33
19 Procter R P M. Hydrogen degradation of ferrous alloys [J]. Br. Corros. J., 1986, 21: 79
[1] CHENG Kaiyuan, PENG Yang, HUANG Feng, CHENG Xianglong, XU Yunfeng, PENG Zhixian, LIU Jing. Adaptability of Typical Seamless Tube Steels to Hydrogen-blended Natural Gas Environments and Hydrogen- induced Damage Mechanism[J]. 中国腐蚀与防护学报, 2025, 45(2): 397-406.
[2] CHEN Kai, DU Yifan, XU Haoyun, LV Liang, DANG Guiming, WANG Yujin, ZHENG Shuqi. Hydrogen Permeation and Hydrogen Embrittlement Sensitivity of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
[3] LEI Aijia, DAI Xun, XU Jiangtao, DENG Ruiju, HUANG Xuefei. Optimization of Heat Treatment Process and Corrosion Performance in High-temperature and High-pressure of Zr-1.35Sn-0.22Fe-0.13Cr-0.05Ni Alloy[J]. 中国腐蚀与防护学报, 2025, 45(2): 497-505.
[4] LIU Guoqiang, FENG Changjie, XIN Li, MA Tianyu, CHANG Hao, PAN Yuxuan, ZHU Shenglong. Preparation and Microstructure of Diffused Ti-Al-Si Coatings on Ti-6Al-4V Alloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 69-80.
[5] MA Jinyao, DONG Nan, GUO Zhensen, HAN Peide. Effect of B and Ce Micro-alloying on Secondary Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[6] GAO Junxuan, CAO Han, KUANG Wenjun, ZHENG Quan, ZHANG Peng, ZHONG Weihua. Research Progress on Irradiation Assisted Stress Corrosion Cracking Behavior and Mechanism of Austenitic Steel[J]. 中国腐蚀与防护学报, 2024, 44(4): 835-846.
[7] LI Chan, WANG Qingtian, YANG Chenggang, ZHANG Xianwei, HAN Dongao, LIU Yuwei, LIU Zhiyong. Corrosion Behavior of 904L Super-austenitic Stainless Steel in Simulated Primary Water in Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[8] GENG Zhenzhen, ZHANG Yuzhu, DU Xiaojiang, WU Hanhui. Synergistic Effect of S2- and Cl- on Corrosion and Passivation Behavior of 316L Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[9] WANG Zhihui, WU Lei, JIANG Yishan, ZHANG Xian, WAN Xiangliang, LI Guangqiang, WU Kaiming. Effect of Deformation Strengthening and Phase Reversion Grain Refinement Strengthening on Corrosion Resistance of Fe-18Cr-8Ni Steel[J]. 中国腐蚀与防护学报, 2024, 44(2): 429-436.
[10] WANG Yanfei, LI Yaozhou, HUANG Yuting, XIE Honglin, WU Weijie. Effect of Grain Size on Hydrogen Embrittlement of 304L Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 494-506.
[11] LIANG Chaoxiong, LIANG Xiaohong, HAN Peide. Effect of a New Heat Treatment Process on B Elements Distribution, Second Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
[12] HAN Ruizhu, JIA Jianwen, LI Yang, ZHANG Wei, XU Fanghong, HOU Lifeng, WEI Yinghui. Corrosion Behavior of Three Super Austenitic Stainless Steels in a Molten Salts Mixture at 650-750 ℃[J]. 中国腐蚀与防护学报, 2023, 43(2): 421-427.
[13] HE Zhihao, JIA Jianwen, LI Yang, ZHANG Wei, XU Fanghong, HOU Lifeng, WEI Yinghui. Passivation Behavior of Super Austenitic Stainless Steels in Simulated Flue Gas Desulfurization Condensate[J]. 中国腐蚀与防护学报, 2023, 43(2): 408-414.
[14] CHEN Tingting, WU Xiaolei, HAN Peide. Gradient Nanotwin Structure Prepared by SMAT Technology on S31254 Super Austenitic Stainless Steel Surface and Its Corrosion Behavior in 10%NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(6): 973-978.
[15] LV Yingxi. Analysis of Cl- Corrosion Resistance of High Mo Super Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2022, 42(5): 765-770.
No Suggested Reading articles found!