Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (4): 883-890    DOI: 10.11902/1005.4537.2023.296
Current Issue | Archive | Adv Search |
Fast Evaluation of Resistance to High Temperature Steam Sterilization Process for Organic Coating Coated Tinplate by Electrochemical Method
LIU Zhe1, DENG Chengman1, WEI Junsheng2, XIA Da-Hai1()
1. School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
2. Baoshan Iron & Steel Co., Ltd., Shanghai 201900, China
Cite this article: 

LIU Zhe, DENG Chengman, WEI Junsheng, XIA Da-Hai. Fast Evaluation of Resistance to High Temperature Steam Sterilization Process for Organic Coating Coated Tinplate by Electrochemical Method. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 883-890.

Download:  HTML  PDF(8840KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The resistance to high temperature steam sterilization process of tinplate coated with polyester, epoxy-phenolic and epoxy-amino coating respectively was studied by cathodic polarization and electrochemical impedance spectroscopy (EIS), and then the relevant mechanism was also discussed. The results showed that the cathodic polarization current can effectively distinguish the protective properties of coated tinplate for food packaging, and the higher the cathodic polarization current, the worse the protective properties of the coating. The corrosion resistance of epoxy phenolic coating is the best, followed by the epoxy amino paint, and that of polyester coating is the worst. After high temperature steam sterilization at 127oC for 1 h, the protection performance of the coated tinplate in 3.5%NaCl solution decreased, and the low-frequency impedance modulus decreased, namely the minimum value was 5.4% and the maximum was 69.7%. Overall, the resistance to high temperature steam sterilization of the three coatings was similar. The bonding strength between the coating/ tinplate and the wettability of the coating were the main parameters that affect its resistance to high temperature steam sterilization process. The better the bonding strength and the worse the wettability of the coating, the better the resistance to the high temperature steam sterilization process.

Key words:  tinplate      electrochemical impedance spectroscopy      cathodic polarization      fast evaluation     
Received:  18 September 2023      32134.14.1005.4537.2023.296
ZTFLH:  O646  
Fund: Baoshan Iron & Steel Co., Ltd
Corresponding Authors:  XIA Dahai, E-mail: dahaixia@tju.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.296     OR     https://www.jcscp.org/EN/Y2024/V44/I4/883

Steel grade

Sample No.

(without boiling sterilization)

Sample No.

(with boiling sterilization)

Coating type
TH435A1-0A1-1Polyester-BPA-NI paint
TH415B1-0B1-1
TH550C1-0C1-1
TH550D1-0D1-1
TH435A2-0A2-1Epoxy Phenolic Coating
TH415B2-0B2-1
TH550C2-0C2-1
TH550D2-0D2-1
TH435A3-0A3-1Epoxy amino paint
TH415B3-0B3-1
TH550C3-0C3-1
TH550D3-0D3-1
Table 1  Numbers of the lacquered tinplate samples with polymer coatings in the tests
Fig.1  Cathodic polarization curves of the samples with the numbers of series A (a), series B (b), series C (c) and series D (d) before and after boiling sterilization in 3.5%NaCl solution
Fig.2  Cathodic currents at -1.4 VSCE for the samples with various coatings before (a) and after (b) boiling sterilization
Fig.3  EIS results of the samples with the numbers of series A (a, b), series B (c, d), series C (e, f) and series D (g, h) before and after boiling sterilization in 3.5%NaCl solution
Sample No.OCP|Z|0.01 HzSample No.OCP|Z|0.01 HzReduction of |Z|0.01 Hz
VSCE105 Ω⸱cm2VSCE105 Ω⸱cm2
A1-0-0.4901.810A1-1-0.5031.33026.5%
A2-0-0.546199.0A2-1-0.525153.023.1%
A3-0-0.48478.00A3-1-0.52837.7051.7%
B1-0-0.4991.110B1-1-0.5180.87521.2%
B2-0-0.53880.20B2-1-0.65563.9020.3%
B3-0-0.52293.90B3-1-0.55252.1044.5%
C1-0-0.4822.740C1-1-0.4780.76172.2%
C2-0-0.554167.0C2-1-0.529158.05.4%
C3-0-0.53070.70C3-1-0.48768.103.7%
D1-0-0.5113.090D1-1-0.5370.93569.7%
D2-0-0.547397.0D2-1-0.534130.067.3%
D3-0-0.546149.0D3-1-0.56064.2056.9%
Table 2  Open circuit potentials and impedance moduli of various samples without and with boiling sterilization at 0.01 Hz
Fig.4  Surface morphologies of the samples with various coatings before and after boiling sterilization
Fig.5  Cross-sectional morphologies and EDS elemental profiles of A1 (a, d), A2 (b, e), A3 (c, f) samples without (a-c) and with (d-f) boiling sterilization
[1] Xia D H, Song S Z, Wang J H, et al. Research progress on corrosion mechanism of tinned steel sheet used for food parkaging [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 513
夏大海, 宋诗哲, 王吉会 等. 食品包装用镀锡薄钢板的腐蚀机理研究进展 [J]. 中国腐蚀与防护学报, 2017, 37: 513
doi: 10.11902/1005.4537.2016.225
[2] Xia D H, Song S Z, Wang J H, et al. Corrosion behavior of tinplates in a functional beverage [J]. Acta Phys. Chim. Sin., 2012, 28: 121
夏大海, 宋诗哲, 王吉会 等. 镀锡薄钢板在功能饮料中的腐蚀行为 [J]. 物理化学学报, 2012, 28: 121
[3] Deng C M, Zhu Y, Sun S K, et al. Analysis of failure causes of epoxy-phenolic coated tinplate after boiling sterilization [J]. Eng. Fail. Anal., 2022, 135: 106129
[4] Xia D H, Deng C M, Macdonald D, et al. Electrochemical measurements used for assessment of corrosion and protection of metallic materials in the field: A critical review [J]. J. Mater. Sci. Technol., 2022, 112: 151
[5] Xia D H, Song S Z, Wang J H, et al. Corrosion behavior of tinplate in NaCl solution [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 717
[6] Xia D H, Song Y, Song S Z, et al. Identifying defect levels in organic coatings with electrochemical noise (EN) measured in Single Cell (SC) mode [J]. Prog. Org. Coat., 2019, 126: 53
[7] Xia D H, Song S Z, Wang J H, et al. Corrosion detection of metal cans for beverage packaging [J]. CIESC J., 2012, 63: 1797
doi: 10.3969/j.issn.0438-1157.2012.06.020
夏大海, 宋诗哲, 王吉会 等. 饮料金属包装实罐产品的腐蚀检测 [J]. 化工学报, 2012, 63: 1797
doi: 10.3969/j.issn.0438-1157.2012.06.020
[8] Zhou C, Wang J H, Song S Z, et al. Degradation mechanism of lacquered tinplate in energy drink by in-situ EIS and EN [J]. J. Wuhan Univ. Technol. (Mater. Sci. Ed.), 2013, 28: 367
[9] Xia D H, Wang J H, Jiang Y X, et al. Corrosion behavior of novolac epoxy coated tinplate system in energy drink [J]. J. Tianjin Univ. (Sci. Technol.), 2013, 46: 503
夏大海, 王吉会, 蒋雨轩 等. 环氧酚醛/镀锡薄钢板体系在功能饮料中的腐蚀行为 [J]. 天津大学学报(自然科学与工程技术版), 2013, 46: 503
[10] Ma X Z, Meng L D, Cao X K, et al. Influence of Co-deposition of pollutant particulates ammonium sulfate and sodium chloride on atmospheric corrosion of copper of printed circuit board [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 540
马小泽, 孟令东, 曹祥康 等. 大气污染物硫酸铵和氯化钠混合盐粒沉降对电路板铜大气腐蚀的加速机制 [J]. 中国腐蚀与防护学报, 2022, 42: 540
doi: 10.11902/1005.4537.2021.138
[11] Hu Y F, Cao X K, Ma X Z, et al. Fluorescent nanofiller modified epoxy coatings for visualization of coating degradation [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 460
胡云飞, 曹祥康, 马小泽 等. 采用荧光纳米填料改性环氧涂层实现缺陷可视化 [J]. 中国腐蚀与防护学报, 2023, 43: 460
doi: 10.11902/1005.4537.2022.202
[12] Amand S, Musiani M, Orazem M E, et al. Constant-phase-element behavior caused by inhomogeneous water uptake in anti-corrosion coatings [J]. Electrochim. Acta, 2013, 87: 693
[13] Musiani M, Orazem M E, Pébère N, et al. Determination of resistivity profiles in anti-corrosion coatings from constant-phase-element parameters [J]. Prog. Org. Coat., 2014, 77: 2076
[14] Lau K, Permeh S. Assessment of durability and zinc activity of zinc-rich primer coatings by electrochemical noise technique [J]. Prog. Org. Coat., 2022, 167: 106840
[15] Xia D H, Song S Z, Gong W Q, et al. Detection of corrosion-induced metal release from tinplate cans using a novel electrochemical sensor and inductively coupled plasma mass spectrometer [J]. J. Food Eng., 2012, 113: 11
[16] Zhang L, Lu X Y, Zuo Y. The influence of cathodic polarization on performance of two epoxy coatings on steel [J]. Int. J. Electrochem. Sci., 2014, 9: 6266
[17] Li C Z, Gao Z M, Song S Z. EIS Characteristics of perfectly insulated coating systems under cathodic protection potential [J]. Corros. Sci. Prot. Technol., 2004, 16: 392
李春竹, 高志明, 宋诗哲. 阴极保护下高绝缘性能防护层的电化学阻抗谱特征 [J]. 腐蚀科学与防护技术, 2004, 16: 392
[1] LI Zhuoxuan, CAO Yanhui, LI Chongjie, LI Hui, ZHANG Xiaoming, YONG Xingyue. Relationship Between Corrosion Failure Degree of Organic Coatings and Mechanical Properties for Dissimilar Metal Assamblies[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
[2] FU Jiangyue, GUO Jianxi, YANG Yange, LENG Zhe, WANG Wen. Erosion-corrosion Behavior of a High Strength Low Alloy Steel in Flowing 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(3): 585-600.
[3] PEI Yingying, GUAN Fang, DONG Xucheng, ZHANG Ruiyong, DUAN Jizhou, HOU Baorong. Effect of Desulfovibrio Bizertensis SY-1 on Corrosive Behavior of Metal Materials Under Cathodic Polarization[J]. 中国腐蚀与防护学报, 2024, 44(2): 345-354.
[4] ZHAO Guoxian, LIU Ranran, DING Langyong, ZHANG Siqi, GUO Menglong, WANG Yingchao. Effect of Temperature on CO2-inducedCorrosion Behavior of 5Cr Steel in a Simulated Oilfield Produced High-temperature and High-pressured Water[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[5] HU Jiezhen, SHANGGUAN Juyu, DENG Peichang, FENG Qilan, WANG Gui, WANG Peilin. Effect of Barnacle Adhesion on Corrosion Behavior of Q235 Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[6] DENG Chengman, LIU Zhe, XIA Da-Hai, HU Wenbin. Localized Corrosion Mechanism of 5083-H111 Al Alloy in Simulated Dynamic Seawater Zone[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[7] LIU Ming, WANG Jie, ZHU Chunhui, ZHANG Yanxiao. Electrochemical Corrosion Behavior of 3D-printed NiTi Shape Memory Alloy in a Simulated Oral Environment[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[8] WANG Tong, WANG Wei. Distribution of Relaxation Time of Polydimethylsiloxane Coatings During Self-healing Process[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[9] YUAN Shicheng, WU Yanfeng, XU Changhui, WANG Xingqi, LENG Zhe, YANG Yange. Influence of Polyhydroxy Hyperdispersant on Anti-corrosion Property of Waterborne Epoxy Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 289-300.
[10] MAO Yingchang, ZHU Yu, SUN Shengkai, QIN Zhenbo, XIA Da-Hai, HU Wenbin. Localized Corrosion of 5083 Al-alloy in Simulated Marine Splash Zone[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.
[11] WANG Qixuan, LYU Wensheng, YANG Peng, ZHU Liyi, LIAO Wenjing, ZHU Yuanle. Corrosion of Stainless Steel Shell of Embedded Sensor in Tailings Pond[J]. 中国腐蚀与防护学报, 2022, 42(2): 331-337.
[12] LI Zhenxin, LV Meiying, DU Min. Effect of Combined Potential Polarization on Corrosion of X65 Steel in Seawater Inoculated with Iron Oxiding Bacteria[J]. 中国腐蚀与防护学报, 2022, 42(2): 211-217.
[13] LIANG Taihe, ZHU Xuemei, ZHANG Zhenwei, WANG Xinjian, ZHANG Yansheng. Corrosion Performance of Transition Layer at Interface of Oxide Scale/substrate Formed on Austenitic Steel Fe32Mn7Cr3Al2Si During High Temperature Oxidation[J]. 中国腐蚀与防护学报, 2022, 42(2): 317-323.
[14] CANG Yu, HUANG Yuhui, WENG Shuo, XUAN Fuzhen. Effect of Environmental Variables on Galvanic Corrosion Performance of Welded Joint of Nuclear Steam Turbine Rotor[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[15] CAO Jingyi, FANG Zhigang, LI Liang, FENG Yafei, WANG Xingqi, SHOU Haiming, YANG Yange, CHU Guangzhe, YIN Wenchang. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Fresh Water and Salt Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
No Suggested Reading articles found!