Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (6): 1454-1464    DOI: 10.11902/1005.4537.2023.360
Current Issue | Archive | Adv Search |
Passivation Behavior of Corrosion Resistant Rebar Steels as Bare Steels in a Simulated Concrete Pore Fluid and as Rebar Steels Embedded in Concrete Made of Cement and Sea-sand in a Simulated Seawater
XIE Wenzhen1,2, WANG Zhenyu2(), HAN En-Hou2()
1. School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510000, China
2. Guangdong Institute of Corrosion Science and Technology Innovation, Guangzhou 510000, China
Cite this article: 

XIE Wenzhen, WANG Zhenyu, HAN En-Hou. Passivation Behavior of Corrosion Resistant Rebar Steels as Bare Steels in a Simulated Concrete Pore Fluid and as Rebar Steels Embedded in Concrete Made of Cement and Sea-sand in a Simulated Seawater. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1454-1464.

Download:  HTML  PDF(7119KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The passivation behavior of Cr10Mo1corrosion-resistant rebar steel and ordinary HRB400 rebar steel either as bare steels in a Cl- free simulated concrete pore solution, or as rebar steels embedded in a concrete made of cement and reagent sea-sand in an artificial seawater 3.5% NaCl solution were studied by electrochemical technology and microscopic analysis technology, meanwhile the resistance probe technology was used to establish a rapid evaluation method of rebar corrosion. The results show that the corrosion resistant rebar steel exhibits better passivation behavior in the simulated pore solution with pH 11.5. In the second testing circumstance, the passivation film resistance value of the corrosion-resistant rebar steel is larger than that of the ordinary rebar steel, correspondingly, the corrosion current density of corrosion-resistant rebar steel is also smaller than that of the ordinary one. Results of EDS and XRD characterization show that due to the presence of Cr element, Cr2O3 generated by passivation reaction makes corrosion-resistant rebar steel exhibit better corrosion resistance. In order to rapidly evaluate the corrosion behavior of corrosion-resistant rebar steel, the resistance probe method was adopted to assess the corrosion rate of corrosion-resistant rebar steel in the second testing circumstance environment of seawater sand concrete. Consequently, the annual corrosion rate of corrosion-resistant bar steel was acquired to be 0.0047 mm/a. While the corrosion rate acquired by mass loss method dose further confirm that this resistance probe method may suitably be used to rapidly evaluate the corrosion behavior of steel bars within concretes.

Key words:  concrete pore fluid      seawater sand concrete      corrosion electrochemistry      resistance probe      simulated seawater     
Received:  08 October 2023      32134.14.1005.4537.2023.360
ZTFLH:  TG174  
Fund: National Key Research and Development Project(2021YFB3701700)
Corresponding Authors:  WANG Zhenyu, E-mail: zywang@icost.ac.cn
HAN En-Hou, E-mail: ehhan@icost.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.360     OR     https://www.jcscp.org/EN/Y2024/V44/I6/1454

Fig.1  Corrosion monitoring device of corrosion resistant steel
Fig.2  Opening circuit potentials of bar in simulated concrete solutions at pH 11.5, 12.5, 13.5
Fig.3  Electrochemical impedance diagrams of rebar in simulated pore solutions at pH 11.5 (a, b, c), 12.5 (d, e, f) and 13.5 (g, h, i), HRB400 11.5 (j, k, l)
Fig.4  Equivalent circuit diagram of passivation of rebar
pHTime / dRs / Ω·cm2Rf / 103 Ω·cm2Rct / 106 Ω·cm2Qdl / 10-6 F·cm-2Qf / 10-6 F·cm-2
11.50580.7036.540.6312.4417.79
1839.7076.211.837.3016.02
2858.0082.672.296.2415.65
3795.0085.062.655.7315.54
4935.9098.583.025.2915.34
5887.10101.703.175.0715.60
6998.10111.803.664.7015.52
7941.70110.903.844.5515.37
81009.00110.403.824.4115.64
12.50116.9021.660.179.9020.73
1132.9035.070.756.2918.43
2133.7030.741.245.6817.45
3124.5027.221.595.4916.93
4136.5025.481.915.3716.59
5127.0025.472.135.2816.42
6136.9024.002.545.1916.11
7134.3024.552.805.12 × 10-615.95
8140.6024.272.905.01 × 10-616.11
13.5021.4926.020.1416.9824.20
122.9455.290.3614.2421.99
224.3754.620.3414.8621.12
321.6146.000.3113.0320.58
423.7344.910.3112.2820.48
522.1141.200.3111.6620.38
623.8836.120.3211.6220.29
724.1734.190.3311.2620.25
824.0634.240.3311.4120.26
HRB400-11.50131.30181.000.0821.1057.20
1142.4071.560.37122.0048.63
2142.30623.801.682.2945.28
3130.100.490.701.5446.98
4142.900.520.977.2446.44
5133.000.621.126.1646.10
6141.304.111.406.1945.47
7142.804.791.552.6945.25
8143.809.121.591.5345.26
Table 1  Fitting results of EIS of corrosion-resistant steel rebar in simulated pore solutions with different pH values
Fig.5  Potentiodynamic polarization curves of rebar in simulated pore solutions at pH 11.5 (a), 12.5 (b), 13.5 (c)
pHTimeIpitIcorrEcorrEpit
dμAnAmVmV
11.5210.1665.50-461.00600.80
410.2459.70-451.00675.90
69.9226.50-361.00699.60
810.5238.50-327.00640.30
12.5271.6166.20-388.00565.20
453.6641.50-437.00557.30
651.2772.40-342.00660.10
841.4640.00-365.00640.30
13.5289.4250.20-427.00521.70
498.4925.00-394.00529.60
654.4841.60-380.00573.10
891.2944.80-341.00577.10
Table 2  Electrochemical characteristic parameters of Potentiodynamic polarization curves
Fig.6  Electrochemical impedance spectra and equivalent circuit diagram of corrosion resistant steel and carbon steel HRB400 in actual service environment: (a, b) Bode plots, (c) Nyquist plots, (d) equivalent circuit diagram
TypeRs / Ω·cm2Rf / Ω·cm2Rct / Ω·cm2Qdl / F·cm-2Qf / F·cm-2
Corrosion resistant steel23.35912.80 × 10332.17942.50 × 10-67.63 × 10-3
HRB40027.331.36 × 10311.07948.10 × 10-64.63 × 10-3
Table 3  Fitting results of electrochemical impedance spectra of corrosion resistant steel and carbon steel HRB400
Fig.7  Polarization curves of corrosion resistant steel and carbon steel HRB400 in actual service environment
Type

Icorr

μA

Ecorr

mV

Corrosion

rate

mm·a-1

Corrosion

resistant

steel

37.8-455.017.3
HRB400219.0-402.0100.2
Table 4  Fitting results of linear polarization curves of corrosion resistant steel and carbon steel HRB400 in actual service environment
Fig.8  SEM images of corrosion-resistant steel (a, c) and ordinary carbon steel HRB400 (b, d) after passivation (a, b) and corrosion (c, d)
Fig.9  EDS results of corrosion-resistant steel (a) and ordinary carbon steel HRB400 (b) after passivation
Fig.10  XRD patterns of corrosion products of corrosion-resistant steel and ordinary carbon steel HRB400
TypeOriginalCorrodedLoseCorrosion
massmassmassrate
gggmm·a-1
Corrosion resistant steel63.514663.51060.00400.0061
HRB40065.977765.96230.01540.0238
Table 5  Calculated corrosion rates of corrosion resistant steel and ordinary steel HRB400 in actual service environment based on weight losses
1 Li X Z, Wu Q, Wang G, et al. Electrochemical characteristics of steel corrosion in seawater sea-sand concrete [J]. Concrete, 2020, (7): 20
(李薛忠, 吴 庆, 王 刚 等. 海水海砂混凝土中钢筋锈蚀的电化学特征 [J]. 混凝土, 2020, (7): 20)
2 Wang D Q, Ming J, Shi J J. Enhanced corrosion resistance of rebar in carbonated concrete pore solutions by Na2HPO4 and benzotriazole [J]. Corros. Sci., 2020, 174: 108830
3 He Z M, Shang M G, Qiao H X, et al. Constant current accelerated corrosion law of reinforced concrete based on EIS [J]. J. Mater. Sci. Eng., 2021, 39: 596
(何忠茂, 尚明刚, 乔宏霞 等. 基于交流阻抗(EIS)的钢筋混凝土恒电流加速腐蚀规律 [J]. 材料科学与工程学报, 2021, 39: 596)
4 Liu G J, Zhang Y S, Liu C, et al. Corrosion of steel in simulated concrete pore solution and equivalent circuits selection [J]. Mater. Rep., 2021, 35: 14072
(刘国建, 张云升, 刘 诚 等. 模拟混凝土孔溶液中钢筋腐蚀与等效电路选取 [J]. 材料导报, 2021, 35: 14072)
5 Cui L, Zhao Y, Chen S Q. Study on corrosion inhibition efficiency of steel bar with different rust inhibitors in simulated seawater concrete pore solution [J]. Highway, 2019, 64(11): 210
(崔 磊, 赵 耀, 陈士强. 模拟海水混凝土孔隙液中不同阻锈剂对钢筋腐蚀缓蚀效率的研究 [J]. 公路, 2019, 64(11): 210)
6 Wen C, Tian Y W, Wang G, et al. Electrochemical behavior of steel corrosion in microporous environment of marine concrete [J]. J. Guangdong Ocean Univ., 2022, 42(2): 126
(文 成, 田玉琬, 王 贵 等. 海工混凝土微孔隙环境中钢筋的腐蚀电化学行为 [J]. 广东海洋大学学报, 2022, 42(2): 126)
7 Tao Y K, Li S R. Corrosion behavior of high strength steel in reinforced concrete environment [J]. Corros. Prot., 2021, 42(7): 38
(陶永康, 李思锐. 高强钢筋在混凝土环境中的腐蚀行为 [J]. 腐蚀与防护, 2021, 42(7): 38)
8 Yan L B, Chouw N. A comparative study of steel reinforced concrete and flax fibre reinforced polymer tube confined coconut fibre reinforced concrete beams [J]. J. Reinf. Plast. Compos., 2013, 32: 1155
9 Etteyeb N, Sanchez M, Dhouibi L, et al. Effectiveness of pretreatment method to hinder rebar corrosion in concrete [J]. Corros. Eng. Sci. Technol., 2010, 45: 435
10 Jiang J Y, Wang D Q, Chu H Y, et al. The passive film growth mechanism of new corrosion-resistant steel rebar in simulated concrete pore solution: nanometer structure and electrochemical study [J]. Materials, 2017, 10: 412
11 Zuo L F, Zhang J C, Ma H, et al. Corrosion behavior of Cr-Ni alloyed corrosion resistant rebar in chloride environment [J]. Corros. Prot., 2017, 38: 83
(左龙飞, 张建春, 麻晗 等. 一种Cr-Ni合金化耐蚀钢筋在氯盐环境中的腐蚀行为 [J]. 腐蚀与防护, 2017, 38: 83)
12 Zhong Z H, Mo Y Q, Zhang K, et al. The steel corrosion mechanism and corrosion rate control in concrete [J]. J. South China Norm. Univ. (Nat. Sci. Ed.), 2022, 54(1): 48
(钟志恒, 莫烨强, 张 凯 等. 混凝土中钢筋的腐蚀机理与腐蚀速率控制研究 [J]. 华南师范大学学报(自然科学版), 2022, 54(1): 48)
13 Ai Z Y, Jiang J Y, Sun W, et al. Cathodic behaviour of new alloy corrosion-resistant steel Cr10Mo1 and its depression mechanism [J]. J. Southeast Univ. (Nat. Sci. Ed.), 2016, 46: 872
(艾志勇, 蒋金洋, 孙 伟 等. 新型合金耐蚀钢筋Cr10Mo1的阴极行为及其阻抑机制 [J]. 东南大学学报(自然科学版), 2016, 46: 872)
14 Zhang J C, Jiang J Y, Li Y, et al. Passive films formed on seawater corrosion resistant rebar 00Cr10MoV in simulated concrete pore solutions [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 441
(张建春, 蒋金洋, 李 阳 等. 耐海水腐蚀钢筋00Cr10MoV在模拟混凝土孔隙液中钝化膜的研究 [J]. 中国腐蚀与防护学报, 2016, 36: 441)
doi: 10.11902/1005.4537.2015.182
15 Hu S M, Liu Q S, Liu G, et al. Application status of corrosion monitoring technologies in the field of high-voltage direct current interference in buried pipelines [J]. Mater. Prot., 2023, 56(11): 139
(胡上茂, 刘青松, 刘 刚 等. 腐蚀监测技术在高压直流干扰埋地管道领域的应用现状 [J]. 材料保护, 2023, 56(11): 139)
16 Hou L, Li W H, Zheng H B, et al. Recent advances and development of corrosion prevention technologies for marine reinforced concrete structures [J]. Mater. Prot., 2017, 50(3): 62
(侯 磊, 李伟华, 郑海兵 等. 海洋钢筋混凝土结构防腐蚀技术研究进展 [J]. 材料保护, 2017, 50(3): 62)
17 Ai Z Y, Jiang J Y, Sun W, et al. Passive behaviour of Cr8Ni2 alloy corrosion-resistant steel in simulating concrete pore solutions with different pH values [J]. J. Southeast Univ. (Nat. Sci. Ed.), 2016, 46: 152
(艾志勇, 蒋金洋, 孙 伟 等. Cr8Ni2合金耐蚀钢筋在不同pH值模拟混凝土孔溶液中的钝化行为 [J]. 东南大学学报(自然科学版), 2016, 46: 152)
18 Lliso-Ferrando J R, Gasch I, Martínez-Ibernón A, et al. Effect of macrocell currents on rebar corrosion in reinforced concrete structures exposed to a marine environment [J]. Ocean Eng., 2022, 257: 111680
19 Wang J J, Liu J, Chen R N, et al. Microstructure and corrosion behavior of 9CrMo corrosion-resistant steel bars for marine engineering [J]. Iron Steel, 2023, 58(5): 112
(王进建, 刘 静, 陈润农 等. 海洋工程用9CrMo耐蚀钢筋组织及腐蚀行为 [J]. 钢铁, 2023, 58(5): 112)
doi: 10.13228/j.boyuan.issn0449-749x.20220610
20 Wan Y, Song F L, Li L J. Corrosion characteristics of carbon steel in simulated marine atmospheres [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 851
(万 晔, 宋芳龄, 李立军. 基于海洋大气环境因素影响下的碳钢腐蚀特征研究 [J]. 中国腐蚀与防护学报, 2022, 42: 851)
21 Ai Z Y, Jiang J Y, Sun W, et al. Enhanced passivation of alloy corrosion-resistant steel Cr10Mo1 under carbonation — Passive film formation, the kinetics and mechanism analysis [J]. Cem. Concr. Compos., 2018, 92: 178
22 Zhang Z H, Yu X P, Gong N, et al. Passivation behavior of Cr-modified rebar in simulated concrete pore solutions with different pH [J]. J. Mater. Res. Technol., 2023, 26: 246
23 Feng B, Weng Y J, Li X Y, et al. A novel coupon-type electrical resistance probe for environmental corrosion monitoring [J]. J. Shanghai Univ. (Nat. Sci.), 2015, 21: 88
(冯 蓓, 翁永基, 李相怡 等. 用于环境腐蚀监测的挂片型电阻探针 [J]. 上海大学学报(自然科学版), 2015, 21: 88)
24 Liu G Q, Zhang D F, Chen H X, et al. Electrochemical corrosion behavior of 2304 duplex stainless steel in a simulated pore solution in reinforced concrete serving in marine environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 204
(刘国强, 张东方, 陈昊翔 等. 2304双相不锈钢钢筋在混凝土孔隙模拟液中的电化学腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 204)
[1] MA Xiaowei, XUE Rongjie, WANG Taotao, YANG Liang, LIU Zhenguang. Comparison of Corrosion Resistance of Zr-based Amorphous Alloys and Traditional Alloys in Seawater[J]. 中国腐蚀与防护学报, 2024, 44(4): 949-956.
[2] MA Xiaoze, MENG Lingdong, CAO Xiangkang, XIAO Song, DONG Zehua. Influence of Co-deposition of Pollutant Particulates Ammonium Sulfate and Sodium Chloride on Atmospheric Corrosion of Copper of Printed Circuit Board[J]. 中国腐蚀与防护学报, 2022, 42(4): 540-550.
[3] TANG Rongmao, LIU Guangming, SHI Chao, ZHANG Bangyan, TIAN Jihong, GAN Hongyu, LIU Yongqiang. Inhibition and Adsorption Behavior of Sodium Dodecyl-benzene Sulfonate on Q235 Steel in Simulated Concrete Pore Fluid[J]. 中国腐蚀与防护学报, 2021, 41(6): 857-863.
[4] Xiuzhou LIN, Li YANG, Yongjun MEI, Xingwen ZHENG, Shuwen LUO, Xuejun CUI. Corrosion Electrochemical Behavior Beneath Thin Electrolyte Layer of Potassium Formate Solution of Cd-plated 4130 Steel Used for Aircraft Landing Gear[J]. 中国腐蚀与防护学报, 2017, 37(6): 567-574.
[5] Tianyi ZHANG,Junsheng WU,Hailong GUO,Xiaogang LI. Influence of HSO3- on Passive Film Composition and Corrosion Resistance of 2205 Duplex Stainless Steelin Simulated Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.
[6] LIU Zhiyong, JIA Jinghuan, DU Cuiwei, LI Xiaogang, WANG Liying. Corrosion Behavior of X80 and X52 Steels in Simulated Seawater Environments[J]. 中国腐蚀与防护学报, 2014, 34(4): 327-332.
[7] TANG Zilong SONG Xin ZHANG Yipin. CONTROL FACTORS OF TIME OF WETNESS AND IRP CORROSION RATE FOR Q235 STEEL UNDER PURE WATER THIN FILM[J]. 中国腐蚀与防护学报, 2009, 29(3): 161-166.
No Suggested Reading articles found!