Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (3): 612-622    DOI: 10.11902/1005.4537.2023.182
Current Issue | Archive | Adv Search |
Effect of Coating Process Temperatures on Hot Corrosion Behavior Induced by Deposit of Sulfates Salts in Air at 750oC for CVD Aluminized Coatings on K452 Superalloy
XU Jiaxin1, GENG Shujiang1(), WANG Jinlong1, WANG Fuhui1, SUN Qingyun2, WU Yong2, XIA Siyao2
1. Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
2. China Academy of Machinery Wuhan Research Institute of Materials Protection Co., Ltd., Wuhan 430030, China
Cite this article: 

XU Jiaxin, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Effect of Coating Process Temperatures on Hot Corrosion Behavior Induced by Deposit of Sulfates Salts in Air at 750oC for CVD Aluminized Coatings on K452 Superalloy. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 612-622.

Download:  HTML  PDF(16822KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Aluminized coatings were deposited on K452 superalloy by chemical vapor deposition (CVD) technique at the temperatures 850, 950 and 1050oC, respectively. The effect of deposition temperature on the corrosion behavior of K452 alloys without and with CVD aluminized coatings was comparatively investigated beneath deposits of Na2SO4 and Na2SO4 + NaCl (3 ± 0.2 mg/cm2), respectively in air at 750oC. Then their cross-sectional morphologies and phase structures were characterized by SEM/EDS and XRD. The results showed that all the aluminized coatings exhibited better corrosion resistance to the deposits of Na2SO4 and Na2SO4 + NaCl as compared to the bare K452 alloy after 50 h of corrosion. Notably, the corrosion resistance of the coatings was increased with the increase in deposition temperatures.

Key words:  CVD aluminized coatings      deposition temperature      Na2SO4-induced corrosion      Na2SO4 + NaCl-induced corrosion     
Received:  01 June 2023      32134.14.1005.4537.2023.182
ZTFLH:  TG174  
Fund: National Key R&D Program of China(2020YFB2010400);Hubei Provincial Key Research and Development Program of China(2021BAA210)
Corresponding Authors:  GENG Shujiang, E-mail: gengsj@smm.neu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.182     OR     https://www.jcscp.org/EN/Y2024/V44/I3/612

Fig.1  XRD patterns of three aluminized coatings
Fig.2  Cross-sectional morphologies and corresponding EDS element mappings of aluminized coatings prepared at 850oC (a), 950oC (b) and 1050oC (c)
Fig.3  Corrosion kinetics of K452 alloy and three aluminized coatings during hot corrosion of Na2SO4 deposition in air at 750oC
Fig.4  Cross-sectional morphologies and corresponding EDS element mappings of K452 alloy (a) and three aluminized coatings prepared at 850oC (b), 950oC (c) and 1050oC (d) after hot corrosion of Na2SO4 deposition for 50 h in air at 750oC
Fig.5  XRD patterns of K452 alloy and three aluminized coatings after hot corrosion of Na2SO4 deposition for 50 h in air at 750oC
Fig.6  Corrosion kinetics of K452 alloy and three aluminized coatings during hot corrosion of (Na2SO4 + NaCl) deposition in air at 750oC
Fig.7  Cross-sectional morphologies and corresponding EDS element mappings of K452 alloy (a) and three aluminized coatings prepared at 850oC (b), 950oC (c) and 1050oC (d) after hot corrosion of (Na2SO4 + NaCl) deposition for 50 h in air at 750oC
Fig.8  XRD patterns of K452 alloy and three aluminized coatings after hot corrosion of (Na2SO4 + NaCl) deposition for 50 h in air at 750oC
1 Abdulsattar F, Zhang S Y, Iacovides H, et al. Effect of porous blocks on flow development through a serpentine cooling passage under stationary and rotating conditions [J]. Exp. Therm. Fluid Sci., 2022, 133: 110594
doi: 10.1016/j.expthermflusci.2021.110594
2 Storti B, Garelli L, Storti M, et al. Optimization of an internal blade cooling passage configuration using a Chimera approach and parallel computing [J]. Finite Elem. Anal. Des., 2020, 177: 103423
doi: 10.1016/j.finel.2020.103423
3 Yang P, Bu Z Y, An Y L, et al. A systematic study on Na2SO4-induced hot corrosion behavior of plasma-sprayed La2(Zr0.75Ce0.25)2O7 coating [J]. Surf. Coat. Technol., 2022, 429: 127979
doi: 10.1016/j.surfcoat.2021.127979
4 Deodeshmukh V, Mu N, Li B, et al. Hot corrosion and oxidation behavior of a novel Pt + Hf-modified γ′-Ni3Al + γ-Ni-based coating [J]. Surf. Coat. Technol., 2006, 201: 3836
doi: 10.1016/j.surfcoat.2006.07.250
5 Shang J, Gu Y, Zhao J, et al. Corrosion behavior in molten salts at 850oC and its effect on mechanical properties of Hastelloy X alloy fabricated by additive manufacturing [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 671
尚 进, 古 岩, 赵 京 等. 增材制造Hastelloy X合金在850℃混合硫酸盐中热腐蚀行为及其对力学性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 671
6 Cheng Y X, Cao C, Jiang C X, et al. Corrosion behavior of enamel/aluminide composite coating in a simulated high temperature marine environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 410
程玉贤, 曹 超, 蒋成洋 等. 模拟高温海洋环境中铝化物/搪瓷复合涂层腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 410
doi: 10.11902/1005.4537.2021.223
7 Zhang Q, Liang T S, Wang W, et al. Oxidation kinetics and microstructure evolution of nanocrystalline Ni-12Cr alloy at 800oC [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 733
张 勤, 梁涛沙, 王 文 等. 纳米晶Ni-12Cr合金800℃高温氧化动力学和氧化膜结构演化 [J]. 中国腐蚀与防护学报, 2022, 42: 733
8 Yavorska M, Sieniawski J, Zielińska M. Functional properties of aluminide layer deposited on Inconel 713 LC Ni-based superalloy in the CVD process [J]. Arch. Metall. Mater., 2011, 56: 187
9 Li Q, Yuan X H, Li D J, et al. Effect of pre-oxidation treatment on the hot corrosion behavior of pack-cemented aluminide coatings on the K438 alloy in salt mixture [J]. Corros. Commun., 2022, 5: 1
doi: 10.1016/j.corcom.2021.10.006
10 Yu X, Song P, He X, et al. Influence of the combined-effect of NaCl and Na2SO4 on the hot corrosion behaviour of aluminide coating on Ni-based alloys [J]. J. Alloy. Compd., 2019, 790: 228
doi: 10.1016/j.jallcom.2019.03.165
11 Kepa T, Bonnet G, Pedraza F. Oxidation behaviour of ultrafast slurry aluminized nickel [J]. Surf. Coat. Technol., 2021, 424: 127667
doi: 10.1016/j.surfcoat.2021.127667
12 Kepa T, Pedraza F, Rouillard F. Intermetallic formation of Al-Fe and Al-Ni phases by ultrafast slurry aluminization (flash aluminizing) [J]. Surf. Coat. Technol., 2020, 397: 126011
doi: 10.1016/j.surfcoat.2020.126011
13 Mollard M, Pedraza F, Bouchaud B, et al. Influence of the superalloy substrate in the synthesis of the Pt-modified aluminide bond coat made by slurry [J]. Surf. Coat. Technol., 2015, 270: 102
doi: 10.1016/j.surfcoat.2015.03.015
14 Tavakoli Targhi V, Omidvar H, Sharifianjazi F, et al. Hot corrosion behavior of aluminized and Si-modified aluminized coated IN-738LC produced by a novel hot-dip process [J]. Surf. Interfaces, 2020, 21: 100599
15 Zang J J, Song P, Feng J, et al. Oxidation behaviour of the nickel-based superalloy DZ125 hot-dipped with Al coatings doped by Si [J]. Corros. Sci., 2016, 112: 170
doi: 10.1016/j.corsci.2016.07.020
16 Wang C J, Chen S M. Microstructure and cyclic oxidation behavior of hot dip aluminized coating on Ni-base superalloy Inconel 718 [J]. Surf. Coat. Technol., 2006, 201: 3862
doi: 10.1016/j.surfcoat.2006.07.242
17 Sitek R, Bolek T, Dobosz R, et al. Microstructure and oxidation resistance of aluminide layer produced on Inconel 100 nickel alloy by CVD method [J]. Surf. Coat. Technol., 2016, 304: 584
doi: 10.1016/j.surfcoat.2016.07.072
18 Xu Z H, Dai J W, Niu J, et al. Isothermal oxidation and hot corrosion behaviors of diffusion aluminide coatings deposited by chemical vapor deposition [J]. J. Alloy. Compd., 2015, 637: 343
doi: 10.1016/j.jallcom.2015.01.227
19 Kourtidou D, Chaliampalias D, Vogiatzis C, et al. Deposition of Ni-Al coatings by pack cementation and corrosion resistance in high temperature and marine environments [J]. Corros. Sci., 2019, 148: 12
doi: 10.1016/j.corsci.2018.11.003
20 Xu J X, Geng S J, Wang J L, et al. Effects of solid NaCl deposit and water vapor on corrosion resistance of K452 superalloy and aluminized coating [J]. Corros. Commun., 2023, 9: 13
doi: 10.1016/j.corcom.2022.07.004
21 Bozza F, Bolelli G, Giolli C, et al. Diffusion mechanisms and microstructure development in pack aluminizing of Ni-based alloys [J]. Surf. Coat. Technol., 2014, 239: 147
doi: 10.1016/j.surfcoat.2013.11.034
22 Zhang C Y, Ma Z, Dong S Z, et al. High-temperature oxidation behaviour of refurbished (Ni, Pt)Al coating on Ni-based superalloy at 1100oC [J]. Corros. Sci., 2021, 187: 109521
doi: 10.1016/j.corsci.2021.109521
23 Hu S S, Finklea H, Liu X B. A review on molten sulfate salts induced hot corrosion [J]. J. Mater. Sci. Technol., 2021, 90: 243
doi: 10.1016/j.jmst.2021.03.013
24 Teng J W, Gong X J, Yang B B, et al. High temperature oxidation behavior of a novel Ni-Cr-W-Al-Ti superalloy [J]. Corros. Sci., 2022, 198: 110141
doi: 10.1016/j.corsci.2022.110141
25 Xiang J Y, Xie F Q, Wu X Q, et al. Hot corrosion behavior of a Si-Y co-deposition coating on a Ti2AlNb based alloy in NaCl-Na2SO4 mixture [J]. Surf. Coat. Technol., 2021, 419: 127282
doi: 10.1016/j.surfcoat.2021.127282
26 Geng Y X, Mo Y, Zheng H Z, et al. Effect of laser shock peening on the hot corrosion behavior of Ni-based single-crystal superalloy at 750oC [J]. Corros. Sci., 2021, 185: 109419
doi: 10.1016/j.corsci.2021.109419
27 Zhu L J, Zhu S L, Wang F H. Hot corrosion behaviour of a Ni + CrAlYSiN composite coating in Na2SO4-25wt.% NaCl melt [J]. Appl. Surf. Sci., 2013, 268: 103
doi: 10.1016/j.apsusc.2012.12.012
28 Abe F, Araki H, Yoshida H, et al. The role of aluminum and titanium on the oxidation process of a nickel-base superalloy in steam at 800oC [J]. Oxid. Met., 1987, 27: 21
doi: 10.1007/BF00656727
29 Tsaur C C, Rock J C, Wang C J, et al. The hot corrosion of 310 stainless steel with pre-coated NaCl/Na2SO4 mixtures at 750oC [J]. Mater. Chem. Phys., 2005, 89: 445
doi: 10.1016/j.matchemphys.2004.10.002
30 Phother-Simon J, Hanif I, Liske J, et al. The influence of a KCl-rich environment on the corrosion attack of 304 L: 3D FIB/SEM and TEM investigations [J]. Corros. Sci., 2021, 183: 109315
doi: 10.1016/j.corsci.2021.109315
31 Yu M, Zhou D P, Pu J B, et al. Effect of Zr, Ti, Ta and Mo addition on high-temperature oxidation and hot corrosion behavior of NiAlY alloys [J]. J. Alloy. Compd., 2022, 908: 164614
doi: 10.1016/j.jallcom.2022.164614
32 Wang W Q, Cui Y, Liu R, et al. Revealing internal corrosion of GH4169 with stress coupled solid NaCl deposited in a humid environment of 600oC [J]. Corros. Sci., 2022, 195: 110004
doi: 10.1016/j.corsci.2021.110004
33 Zhang M M, Feng Y P, Wang Y H, et al. Corrosion behaviors of nitride coatings on titanium alloy in NaCl-Induced hot corrosion [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1434
doi: 10.1007/s40195-021-01264-8
34 Shinata Y. Accelerated oxidation rate of chromium induced by sodium chloride [J]. Oxid. Met., 1987, 27: 315
doi: 10.1007/BF00659274
35 Liang Z Y, Guo T S, Deng S F, et al. High-temperature corrosion of an Fe-Ni-based alloy HR6W under various conditions at 750oC and 810oC: Effect of the temperature, water vapor, simulated ash and SO2 [J]. Mater. Chem. Phys., 2020, 256: 123670
doi: 10.1016/j.matchemphys.2020.123670
36 Park S J, Seo S M, Yoo Y S, et al. Effects of Al and Ta on the high temperature oxidation of Ni-based superalloys [J]. Corros. Sci., 2015, 90: 305
doi: 10.1016/j.corsci.2014.10.025
37 Song P, Liu M F, Jiang X W, et al. Influence of alloying elements on hot corrosion resistance of nickel-based single crystal superalloys coated with Na2SO4 salt at 900oC [J]. Mater. Des., 2021, 197: 109197
doi: 10.1016/j.matdes.2020.109197
38 Chen Z H, Dong T, Qu W W, et al. Influence of Cr content on hot corrosion and a special tube sealing test of single crystal nickel base superalloy [J]. Corros. Sci., 2019, 156: 161
doi: 10.1016/j.corsci.2019.05.001
39 Goebel J A, Pettit F S. Na2SO4-induced accelerated oxidation (hot corrosion) of nickel [J]. Metall. Trans., 1970, 1: 1943
doi: 10.1007/BF02642794
40 Li L, Lu J, Liu X Z, et al. Al x CoCrFeNi high entropy alloys with superior hot corrosion resistance to Na2SO4 + 25% NaCl at 900oC [J]. Corros. Sci., 2021, 187: 109479
doi: 10.1016/j.corsci.2021.109479
41 Sun J, Liu S B, Li W, et al. Hot corrosion behaviour of Pt modified aluminized NiCrAlYSi coating on a Ni-based single crystal superalloy [J]. Corros. Sci., 2019, 149: 207
doi: 10.1016/j.corsci.2019.01.014
[1] XIE Hui, YU Chao, HUA Jing, JIANG Xiu. Effect of NH+4 Concentration on Corrosion Behavior of N80 Steel in CO2-saturated 3%NaCl Solutions[J]. 中国腐蚀与防护学报, 2024, 44(3): 745-754.
[2] LI Zhuoxuan, CAO Yanhui, LI Chongjie, LI Hui, ZHANG Xiaoming, YONG Xingyue. Relationship Between Corrosion Failure Degree of Organic Coatings and Mechanical Properties for Dissimilar Metal Assamblies[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
[3] HUANG Jufeng, SONG Guangling. Research Progress on Corrosion Testing and Analysis of Mg-alloys[J]. 中国腐蚀与防护学报, 2024, 44(3): 519-528.
[4] HU Qi, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Hot Corrosion Behavior of Inconel 718 Without and With Aluminide Coating in Air Beneath a Thin Film of Salt Mixture of Na2SO4 + 5%NaCl[J]. 中国腐蚀与防护学报, 2024, 44(3): 623-634.
[5] WEI Gaofei, DENG Shuduan, SHAO Dandan, XU Juan, LI Xianghong. Inhibition Action of Machilus yunnanensis Leaves Extract on Corrosion of Al-plate in HCl Medium[J]. 中国腐蚀与防护学报, 2024, 44(3): 601-611.
[6] FENG Likui, CHENG Yijie, SONG Xiaoning, YU Zhiyong, YAN Zixuan, ZHANG Daquan. Corrosion Inhibition of 1, 2, 4-triazaole on Copper in a Stimulated Cooling Water for Synchronous Condenser[J]. 中国腐蚀与防护学报, 2024, 44(3): 772-780.
[7] ZHANG Ming, GONG Ning, ZHANG Bo, HUO Hongbo, LI Haonan, ZHONG Xiankang. Evaluation of Tubing Service Life Based on Corrosion Prediction and Strength Calculation[J]. 中国腐蚀与防护学报, 2024, 44(3): 781-788.
[8] LI Gangqing, LIU Xi, SUN Xiaoguang, PAN Jinglong, CAO Xiangkang, DONG Zehua. Research Progress on Trigger Mechanism and Preparation Strategy of Coatings of Defect Self-disclosure[J]. 中国腐蚀与防护学报, 2024, 44(3): 540-552.
[9] LI Chan, WANG Qingtian, YANG Chenggang, ZHANG Xianwei, HAN Dongao, LIU Yuwei, LIU Zhiyong. Corrosion Behavior of 904L Super-austenitic Stainless Steel in Simulated Primary Water in Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[10] ZHANG Zhaoyi, ZHOU Xuejie, CHEN Hao, WU Jun, CHEN Zhibiao, CHEN Zhijian. Corrosion Behavior of Two Steels CCSA and Q235B in Changjiang Freshwater Surroundings[J]. 中国腐蚀与防护学报, 2024, 44(3): 735-744.
[11] PENG Liyuan, WU Xinqiang, ZHANG Ziyu, TAN Jibo. Review on Relationship Between Hot Functional Test Water Chemistry and Corrosion Behavior of Related Component Materials in Pressurized Water Reactor Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2024, 44(3): 529-539.
[12] OUYANG Jialu, WANG Xixi, HAN Xia, WANG Ziming. Inhibition of Imidazolines on CO2 Induced Corrosion of Carbon Steel in Oil and Water Alternatively Wetting Conditions[J]. 中国腐蚀与防护学报, 2024, 44(3): 707-715.
[13] LI Xiaohui, TAO Yiqi, HUANG Hao, ZHANG Zhicheng, LI Entong, LYU Zhanpeng, CHEN Junjie. Effect of Magnetic Field on Anodic Processes of X70 Pipeline Steel in Sodium Carbonate Solution[J]. 中国腐蚀与防护学报, 2024, 44(3): 765-771.
[14] SI Weiting, ZHANG Jihao, GAO Rongjie. Preparation of Superamphiphobic Surface on AZ31B Magnesium Alloy and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2024, 44(2): 381-388.
[15] YANG Shengjie, GAO Yan, GAO Xu, ZHAO Peng, WU Wei, YU Jinshan, ZHANG Junxi. Bifunctional Calcium Aluminate Modified Silica Sol Coating for Reinforced Bar[J]. 中国腐蚀与防护学报, 2024, 44(2): 405-412.
No Suggested Reading articles found!