|
|
Effect of Coating Process Temperatures on Hot Corrosion Behavior Induced by Deposit of Sulfates Salts in Air at 750oC for CVD Aluminized Coatings on K452 Superalloy |
XU Jiaxin1, GENG Shujiang1( ), WANG Jinlong1, WANG Fuhui1, SUN Qingyun2, WU Yong2, XIA Siyao2 |
1. Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China 2. China Academy of Machinery Wuhan Research Institute of Materials Protection Co., Ltd., Wuhan 430030, China |
|
Cite this article:
XU Jiaxin, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Effect of Coating Process Temperatures on Hot Corrosion Behavior Induced by Deposit of Sulfates Salts in Air at 750oC for CVD Aluminized Coatings on K452 Superalloy. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 612-622.
|
Abstract Aluminized coatings were deposited on K452 superalloy by chemical vapor deposition (CVD) technique at the temperatures 850, 950 and 1050oC, respectively. The effect of deposition temperature on the corrosion behavior of K452 alloys without and with CVD aluminized coatings was comparatively investigated beneath deposits of Na2SO4 and Na2SO4 + NaCl (3 ± 0.2 mg/cm2), respectively in air at 750oC. Then their cross-sectional morphologies and phase structures were characterized by SEM/EDS and XRD. The results showed that all the aluminized coatings exhibited better corrosion resistance to the deposits of Na2SO4 and Na2SO4 + NaCl as compared to the bare K452 alloy after 50 h of corrosion. Notably, the corrosion resistance of the coatings was increased with the increase in deposition temperatures.
|
Received: 01 June 2023
32134.14.1005.4537.2023.182
|
|
Fund: National Key R&D Program of China(2020YFB2010400);Hubei Provincial Key Research and Development Program of China(2021BAA210) |
Corresponding Authors:
GENG Shujiang, E-mail: gengsj@smm.neu.edu.cn
|
1 |
Abdulsattar F, Zhang S Y, Iacovides H, et al. Effect of porous blocks on flow development through a serpentine cooling passage under stationary and rotating conditions [J]. Exp. Therm. Fluid Sci., 2022, 133: 110594
doi: 10.1016/j.expthermflusci.2021.110594
|
2 |
Storti B, Garelli L, Storti M, et al. Optimization of an internal blade cooling passage configuration using a Chimera approach and parallel computing [J]. Finite Elem. Anal. Des., 2020, 177: 103423
doi: 10.1016/j.finel.2020.103423
|
3 |
Yang P, Bu Z Y, An Y L, et al. A systematic study on Na2SO4-induced hot corrosion behavior of plasma-sprayed La2(Zr0.75Ce0.25)2O7 coating [J]. Surf. Coat. Technol., 2022, 429: 127979
doi: 10.1016/j.surfcoat.2021.127979
|
4 |
Deodeshmukh V, Mu N, Li B, et al. Hot corrosion and oxidation behavior of a novel Pt + Hf-modified γ′-Ni3Al + γ-Ni-based coating [J]. Surf. Coat. Technol., 2006, 201: 3836
doi: 10.1016/j.surfcoat.2006.07.250
|
5 |
Shang J, Gu Y, Zhao J, et al. Corrosion behavior in molten salts at 850oC and its effect on mechanical properties of Hastelloy X alloy fabricated by additive manufacturing [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 671
|
|
尚 进, 古 岩, 赵 京 等. 增材制造Hastelloy X合金在850℃混合硫酸盐中热腐蚀行为及其对力学性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 671
|
6 |
Cheng Y X, Cao C, Jiang C X, et al. Corrosion behavior of enamel/aluminide composite coating in a simulated high temperature marine environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 410
|
|
程玉贤, 曹 超, 蒋成洋 等. 模拟高温海洋环境中铝化物/搪瓷复合涂层腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 410
doi: 10.11902/1005.4537.2021.223
|
7 |
Zhang Q, Liang T S, Wang W, et al. Oxidation kinetics and microstructure evolution of nanocrystalline Ni-12Cr alloy at 800oC [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 733
|
|
张 勤, 梁涛沙, 王 文 等. 纳米晶Ni-12Cr合金800℃高温氧化动力学和氧化膜结构演化 [J]. 中国腐蚀与防护学报, 2022, 42: 733
|
8 |
Yavorska M, Sieniawski J, Zielińska M. Functional properties of aluminide layer deposited on Inconel 713 LC Ni-based superalloy in the CVD process [J]. Arch. Metall. Mater., 2011, 56: 187
|
9 |
Li Q, Yuan X H, Li D J, et al. Effect of pre-oxidation treatment on the hot corrosion behavior of pack-cemented aluminide coatings on the K438 alloy in salt mixture [J]. Corros. Commun., 2022, 5: 1
doi: 10.1016/j.corcom.2021.10.006
|
10 |
Yu X, Song P, He X, et al. Influence of the combined-effect of NaCl and Na2SO4 on the hot corrosion behaviour of aluminide coating on Ni-based alloys [J]. J. Alloy. Compd., 2019, 790: 228
doi: 10.1016/j.jallcom.2019.03.165
|
11 |
Kepa T, Bonnet G, Pedraza F. Oxidation behaviour of ultrafast slurry aluminized nickel [J]. Surf. Coat. Technol., 2021, 424: 127667
doi: 10.1016/j.surfcoat.2021.127667
|
12 |
Kepa T, Pedraza F, Rouillard F. Intermetallic formation of Al-Fe and Al-Ni phases by ultrafast slurry aluminization (flash aluminizing) [J]. Surf. Coat. Technol., 2020, 397: 126011
doi: 10.1016/j.surfcoat.2020.126011
|
13 |
Mollard M, Pedraza F, Bouchaud B, et al. Influence of the superalloy substrate in the synthesis of the Pt-modified aluminide bond coat made by slurry [J]. Surf. Coat. Technol., 2015, 270: 102
doi: 10.1016/j.surfcoat.2015.03.015
|
14 |
Tavakoli Targhi V, Omidvar H, Sharifianjazi F, et al. Hot corrosion behavior of aluminized and Si-modified aluminized coated IN-738LC produced by a novel hot-dip process [J]. Surf. Interfaces, 2020, 21: 100599
|
15 |
Zang J J, Song P, Feng J, et al. Oxidation behaviour of the nickel-based superalloy DZ125 hot-dipped with Al coatings doped by Si [J]. Corros. Sci., 2016, 112: 170
doi: 10.1016/j.corsci.2016.07.020
|
16 |
Wang C J, Chen S M. Microstructure and cyclic oxidation behavior of hot dip aluminized coating on Ni-base superalloy Inconel 718 [J]. Surf. Coat. Technol., 2006, 201: 3862
doi: 10.1016/j.surfcoat.2006.07.242
|
17 |
Sitek R, Bolek T, Dobosz R, et al. Microstructure and oxidation resistance of aluminide layer produced on Inconel 100 nickel alloy by CVD method [J]. Surf. Coat. Technol., 2016, 304: 584
doi: 10.1016/j.surfcoat.2016.07.072
|
18 |
Xu Z H, Dai J W, Niu J, et al. Isothermal oxidation and hot corrosion behaviors of diffusion aluminide coatings deposited by chemical vapor deposition [J]. J. Alloy. Compd., 2015, 637: 343
doi: 10.1016/j.jallcom.2015.01.227
|
19 |
Kourtidou D, Chaliampalias D, Vogiatzis C, et al. Deposition of Ni-Al coatings by pack cementation and corrosion resistance in high temperature and marine environments [J]. Corros. Sci., 2019, 148: 12
doi: 10.1016/j.corsci.2018.11.003
|
20 |
Xu J X, Geng S J, Wang J L, et al. Effects of solid NaCl deposit and water vapor on corrosion resistance of K452 superalloy and aluminized coating [J]. Corros. Commun., 2023, 9: 13
doi: 10.1016/j.corcom.2022.07.004
|
21 |
Bozza F, Bolelli G, Giolli C, et al. Diffusion mechanisms and microstructure development in pack aluminizing of Ni-based alloys [J]. Surf. Coat. Technol., 2014, 239: 147
doi: 10.1016/j.surfcoat.2013.11.034
|
22 |
Zhang C Y, Ma Z, Dong S Z, et al. High-temperature oxidation behaviour of refurbished (Ni, Pt)Al coating on Ni-based superalloy at 1100oC [J]. Corros. Sci., 2021, 187: 109521
doi: 10.1016/j.corsci.2021.109521
|
23 |
Hu S S, Finklea H, Liu X B. A review on molten sulfate salts induced hot corrosion [J]. J. Mater. Sci. Technol., 2021, 90: 243
doi: 10.1016/j.jmst.2021.03.013
|
24 |
Teng J W, Gong X J, Yang B B, et al. High temperature oxidation behavior of a novel Ni-Cr-W-Al-Ti superalloy [J]. Corros. Sci., 2022, 198: 110141
doi: 10.1016/j.corsci.2022.110141
|
25 |
Xiang J Y, Xie F Q, Wu X Q, et al. Hot corrosion behavior of a Si-Y co-deposition coating on a Ti2AlNb based alloy in NaCl-Na2SO4 mixture [J]. Surf. Coat. Technol., 2021, 419: 127282
doi: 10.1016/j.surfcoat.2021.127282
|
26 |
Geng Y X, Mo Y, Zheng H Z, et al. Effect of laser shock peening on the hot corrosion behavior of Ni-based single-crystal superalloy at 750oC [J]. Corros. Sci., 2021, 185: 109419
doi: 10.1016/j.corsci.2021.109419
|
27 |
Zhu L J, Zhu S L, Wang F H. Hot corrosion behaviour of a Ni + CrAlYSiN composite coating in Na2SO4-25wt.% NaCl melt [J]. Appl. Surf. Sci., 2013, 268: 103
doi: 10.1016/j.apsusc.2012.12.012
|
28 |
Abe F, Araki H, Yoshida H, et al. The role of aluminum and titanium on the oxidation process of a nickel-base superalloy in steam at 800oC [J]. Oxid. Met., 1987, 27: 21
doi: 10.1007/BF00656727
|
29 |
Tsaur C C, Rock J C, Wang C J, et al. The hot corrosion of 310 stainless steel with pre-coated NaCl/Na2SO4 mixtures at 750oC [J]. Mater. Chem. Phys., 2005, 89: 445
doi: 10.1016/j.matchemphys.2004.10.002
|
30 |
Phother-Simon J, Hanif I, Liske J, et al. The influence of a KCl-rich environment on the corrosion attack of 304 L: 3D FIB/SEM and TEM investigations [J]. Corros. Sci., 2021, 183: 109315
doi: 10.1016/j.corsci.2021.109315
|
31 |
Yu M, Zhou D P, Pu J B, et al. Effect of Zr, Ti, Ta and Mo addition on high-temperature oxidation and hot corrosion behavior of NiAlY alloys [J]. J. Alloy. Compd., 2022, 908: 164614
doi: 10.1016/j.jallcom.2022.164614
|
32 |
Wang W Q, Cui Y, Liu R, et al. Revealing internal corrosion of GH4169 with stress coupled solid NaCl deposited in a humid environment of 600oC [J]. Corros. Sci., 2022, 195: 110004
doi: 10.1016/j.corsci.2021.110004
|
33 |
Zhang M M, Feng Y P, Wang Y H, et al. Corrosion behaviors of nitride coatings on titanium alloy in NaCl-Induced hot corrosion [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1434
doi: 10.1007/s40195-021-01264-8
|
34 |
Shinata Y. Accelerated oxidation rate of chromium induced by sodium chloride [J]. Oxid. Met., 1987, 27: 315
doi: 10.1007/BF00659274
|
35 |
Liang Z Y, Guo T S, Deng S F, et al. High-temperature corrosion of an Fe-Ni-based alloy HR6W under various conditions at 750oC and 810oC: Effect of the temperature, water vapor, simulated ash and SO2 [J]. Mater. Chem. Phys., 2020, 256: 123670
doi: 10.1016/j.matchemphys.2020.123670
|
36 |
Park S J, Seo S M, Yoo Y S, et al. Effects of Al and Ta on the high temperature oxidation of Ni-based superalloys [J]. Corros. Sci., 2015, 90: 305
doi: 10.1016/j.corsci.2014.10.025
|
37 |
Song P, Liu M F, Jiang X W, et al. Influence of alloying elements on hot corrosion resistance of nickel-based single crystal superalloys coated with Na2SO4 salt at 900oC [J]. Mater. Des., 2021, 197: 109197
doi: 10.1016/j.matdes.2020.109197
|
38 |
Chen Z H, Dong T, Qu W W, et al. Influence of Cr content on hot corrosion and a special tube sealing test of single crystal nickel base superalloy [J]. Corros. Sci., 2019, 156: 161
doi: 10.1016/j.corsci.2019.05.001
|
39 |
Goebel J A, Pettit F S. Na2SO4-induced accelerated oxidation (hot corrosion) of nickel [J]. Metall. Trans., 1970, 1: 1943
doi: 10.1007/BF02642794
|
40 |
Li L, Lu J, Liu X Z, et al. Al x CoCrFeNi high entropy alloys with superior hot corrosion resistance to Na2SO4 + 25% NaCl at 900oC [J]. Corros. Sci., 2021, 187: 109479
doi: 10.1016/j.corsci.2021.109479
|
41 |
Sun J, Liu S B, Li W, et al. Hot corrosion behaviour of Pt modified aluminized NiCrAlYSi coating on a Ni-based single crystal superalloy [J]. Corros. Sci., 2019, 149: 207
doi: 10.1016/j.corsci.2019.01.014
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|