Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (4): 847-854    DOI: 10.11902/1005.4537.2022.265
Current Issue | Archive | Adv Search |
A Novel Technique of Electrochemical-inductively Coupled Plasma Atomic Emission Spectrometry and Its Application in Corrosion Research
YU Yingjie, LI Ying()
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(2315KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To improve breadth and depth of corrosion theory for metal materials, a combined technique of electrochemical-inductively coupled plasma atomic emission spectrometry (ICP-OES) was developed in recent years. In this technique, an inductively coupled plasma atomic emission spectrometer was coupled to the downstream of a home-built electrochemical flow cell to track the concentration transient of the corrosion products dissolved in the corrosion medium, so that the elemental dissolution rates of metal electrode could be determined in real time. The working principles and the development of this technology were introduced briefly and the applications of this technology in metal corrosion research were summarized at present. Finally, the existing problems and future directions for development of this technique were pointed out.

Key words:  elemental analysis      electrochemical      ICP-OES      metal corrosion     
Received:  29 August 2022      32134.14.1005.4537.2022.265
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51871227);National Natural Science Foundation of China(51671198)
Corresponding Authors:  LI Ying, E-mail: liying@imr.ac.cn   

Cite this article: 

YU Yingjie, LI Ying. A Novel Technique of Electrochemical-inductively Coupled Plasma Atomic Emission Spectrometry and Its Application in Corrosion Research. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 847-854.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.265     OR     https://www.jcscp.org/EN/Y2023/V43/I4/847

Fig.1  Schematic diagram of the electrochemical ICP-OES: (a) reaction system, (b) ICP-OES, (c) fast electronics[22]
Fig.2  Schematic diagram (a) and 3D image (b) of the electrochemical flow cell designed by Ogle and Weber[22]
Fig.3  Schematic diagram of the electrochemical flow cell used for in-situ scratch experiment[25]
Fig.4  Schematic figure of the new electrochemical flow cell[26]
Fig.5  Electrochemical ICP-OES dissolution profile of tri-cation phosphate conversion coating in 0.1 mol/L NaOH solution[38]
Fig.6  Elemental dissolution profiles for AA6061 alloy in 3% NaCl during applied cathodic potential (-1.5 V vs. SCE) followed by pre-activation of the surface by -1.8 V[30]
Fig.7  ICP-OES signal of pure Mg registered together with current signal and the different potential steps signal[31]
1 Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijing: Chemical Industry Press, 2008
曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008
2 Huo D X, Liang J L, Li H, et al. Research progress of application of electrochemical corrosion technology [J]. Hot Work. Technol., 2017, 46(10) : 18
霍东兴, 梁精龙, 李 慧 等. 腐蚀电化学技术应用研究进展 [J]. 热加工工艺, 2017, 46(10): 18
3 Boucherit N, Goff A H L, Joiret S. Influence of Ni, Mo, and Cr on pitting corrosionof steels studied by Raman spectroscopy [J]. Corrosion, 1992, 48: 569
doi: 10.5006/1.3315974
4 Mechehoud F, Benaioun N E, Hakiki N E, et al. Thermally oxidized Inconel 600 and 690 nickel-based alloys characterizations by combination of global photoelectrochemistry and local near-field microscopy techniques (STM, STS, AFM, SKPFM) [J]. Appl. Surf. Sci., 2018, 433: 66
doi: 10.1016/j.apsusc.2017.10.094
5 Martinez-Lombardia E, Lapeire L, Maurice V, et al. Use of local electrochemical methods (SECM, EC-STM) and AFM to differentiate microstructural effects (EBSD) on very pure copper [J]. Corros. Sci. Technol., 2017, 16: 1
doi: 10.14773/cst.2017.16.1.1
6 Li S X, Hihara L H. In situ Raman spectroscopic identification of rust formation in Evans' droplet experiments [J]. Electrochem. Commun., 2012, 18: 48
doi: 10.1016/j.elecom.2012.02.014
7 Maurice V, Marcus P. Progress in corrosion science at atomic and nanometric scales [J]. Prog. Mater. Sci., 2018, 95: 132
doi: 10.1016/j.pmatsci.2018.03.001
8 Mahato N, Singh M M. Investigation of passive film properties and pitting resistance of AISI 316 in aqueous ethanoic acid containing chloride ions using electrochemical impedance spectroscopy(EIS) [J]. Port. Electrochim. Acta, 2011, 29: 233
doi: 10.4152/pea.201104233
9 Nieuwoudt M K, Comins J D, Cukrowski I. Analysis of the composition of the passive film on iron under pitting conditions in 0.05 M NaOH/NaCl using Raman microscopy in situ with anodic polarisation and MCR-ALS [J]. J. Raman. Spectrosc., 2012, 43: 928
doi: 10.1002/jrs.3109
10 Revilla R I, Liang J W, Godet S, et al. Local corrosion behavior of additive manufactured AlSiMg alloy assessed by SEM and SKPFM [J]. J. Electrochem. Soc., 2016, 164: C27
doi: 10.1149/2.0461702jes
11 Sherif E S M, Erasmus R M, Comins J D. In situ Raman spectroscopy and electrochemical techniques for studying corrosion and corrosion inhibition of iron in sodium chloride solutions [J]. Electrochim. Acta, 2010, 55: 3657
doi: 10.1016/j.electacta.2010.01.117
12 Zhang F, Nilsson J O, Pan J S. In situ and operando AFM and EIS studies of anodization of Al 6060: influence of intermetallic particles [J]. J. Electrochem. Soc., 2016, 163: C609
doi: 10.1149/2.0061610jes
13 Bernard M C, Goff A H L, Massinon D, et al. Underpaint corrosion of zinc-coated steel sheet studied by in situ raman spectroscopy [J]. Corros. Sci., 1993, 35: 1339
doi: 10.1016/0010-938X(93)90356-L
14 Örnek C, Engelberg D L. SKPFM measured Volta potential correlated with strain localisation in microstructure to understand corrosion susceptibility of cold-rolled grade 2205 duplex stainless steel [J]. Corros. Sci., 2015, 99: 164
doi: 10.1016/j.corsci.2015.06.035
15 Voith M, Luckeneder G, Hassel A W. In situ identification and quantification in a flow cell with AAS downstream analytics [J]. J. Solid State Electrochem., 2012, 16: 3473
doi: 10.1007/s10008-012-1887-0
16 Klemm S O, Topalov A A, Laska C A, et al. Coupling of a high throughput microelectrochemical cell with online multielemental trace analysis by ICP-MS [J]. Electrochem. Commun., 2011, 13: 1533
doi: 10.1016/j.elecom.2011.10.017
17 Hou L F, Raveggi M, Chen X B, et al. Investigating the passivity and dissolution of a corrosion resistant Mg-33at.%Li alloy in aqueous chloride using online ICP-MS [J]. J. Electrochem. Soc., 2016, 163: C324
doi: 10.1149/2.0871606jes
18 Hou X D, Jones B T. Inductively Coupled Plasma/Optical Emission Spectrometry [A]. Meyers R A. Encyclopedia of Analytical Chemistry, Wiley, 2000
19 Boss C B, Fredeen K J. Concepts, Instrumentation and Techniques in Inductively Coupled Plasma Optical Emission Spectrometry [M]. 3rd ed. Waltham: Perkin Elmer, 1997
20 Xin R X. Plasma Emission Spectrum Analysis [M]. 2nd ed. Beijing: Chemical Industry Press, 2011
辛仁轩. 等离子体发射光谱分析 [M]. 第2版. 北京: 化学工业出版社, 2011
21 Ogle K, Weber S. Anodic dissolution of 304 stainless steel using atomic emission spectroelectrochemistry [J]. J. Electrochem. Soc., 2000, 147: 1770
doi: 10.1149/1.1393433
22 Ogle K, Baeyens J, Swiatowska J, et al. Atomic emission spectroelectrochemistry applied to dealloying phenomena: I. The formation and dissolution of residual copper films on stainless steel [J]. Electrochim. Acta, 2009, 54: 5163
doi: 10.1016/j.electacta.2009.01.037
23 Mercier D, Van Overmeere Q, Santoro R, et al. In-situ optical emission spectrometry during galvanostatic aluminum anodising [J]. Electrochim. Acta, 2011, 56: 1329
doi: 10.1016/j.electacta.2010.10.092
24 Shkirskiy V, Maciel P, Deconinck J, et al. On the time resolution of the atomic emission spectroelectrochemistry method [J]. J. Electrochem. Soc., 2016, 163: C37
doi: 10.1149/2.0991602jes
25 Yan Y M, Zhou P, Gharbi O, et al. Investigating ion release using inline ICP during in situ scratch testing of an Mg-Li(-Al-Y-Zr) alloy [J]. Electrochem. Commun., 2019, 99: 46
doi: 10.1016/j.elecom.2019.01.001
26 Yu Y J, Li Y. New insight into the negative difference effect in aluminium corrosion using in-situ electrochemical ICP-OES [J]. Corros. Sci., 2020, 168: 108568
doi: 10.1016/j.corsci.2020.108568
27 Ogle K. Atomic Emission Spectroelectrochemistry: a new look at the corrosion, dissolution & passivation of complex materials [J]. Corros. Mater., 2012, 37: 60
28 Ogle K. Atomic emission spectroelectrochemistry: real-time rate measurements of dissolution, corrosion, and passivation [J]. Corrosion, 2019, 75: 1398
doi: 10.5006/3336
29 Zhou P, Hutchison M J, Scully J R, et al. The anodic dissolution of copper alloys: pure copper in synthetic tap water [J]. Electrochim. Acta, 2016, 191: 548
doi: 10.1016/j.electacta.2016.01.093
30 Serdechnova M, Volovitch P, Brisset F, et al. On the cathodic dissolution of Al and Al alloys [J]. Electrochim. Acta, 2014, 124: 9
doi: 10.1016/j.electacta.2013.09.145
31 Światowska J, Volovitch P, Ogle K. The anodic dissolution of Mg in NaCl and Na2SO4 electrolytes by atomic emission spectroelectrochemistry [J]. Corros. Sci., 2010, 52: 2372
doi: 10.1016/j.corsci.2010.02.038
32 Rossrucker L, Samaniego A, Grote J P, et al. The pH dependence of magnesium dissolution and hydrogen evolution during anodic polarization [J]. J. Electrochem. Soc., 2015, 162: C333
doi: 10.1149/2.0621507jes
33 Lebouil S, Gharbi O, Volovitch P, et al. Mg dissolution in phosphate and chloride electrolytes: insight into the mechanism of the negative difference effect [J]. Corrosion, 2015, 71: 234
doi: 10.5006/1459
34 Han J, Vivier V, Ogle K. Refining anodic and cathodic dissolution mechanisms: combined AESEC-EIS applied to Al-Zn pure phase in alkaline solution [J]. npj Mater. Degrad., 2020, 4: 19
doi: 10.1038/s41529-020-0123-0
35 Gharbi O, Birbilis N, Ogle K. In-situ monitoring of alloy dissolution and residual film formation during the pretreatment of Al-Alloy AA2024-T3 [J]. J. Electrochem. Soc., 2016, 163: C240
doi: 10.1149/2.1121605jes
36 Zhou P, Erning J W, Ogle K. Interactions between elemental components during the dealloying of Cu-Zn alloys [J]. Electrochim. Acta, 2019, 293: 290
doi: 10.1016/j.electacta.2018.09.181
37 Lebouil S, Tardelli J, Rocca E, et al. Dealloying of Al2Cu, Al7Cu2Fe, and Al2CuMg intermetallic phases to form nanoparticulate copper films [J]. Mater. Corros., 2014, 65: 416
38 Jiang L, Wolpers M, Volovitch P, et al. The degradation of phosphate conversion coatings by electrochemically generated hydroxide [J]. Corros. Sci., 2012, 55: 76
doi: 10.1016/j.corsci.2011.10.004
[1] REN Huangwei, LIAO Bokai, CUI Linjing, XIANG Tengfei. Effect of Liquid Film Thickness on Corrosion Behavior of Solid Slippery Surface under Thin Liquid Film[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[2] BAI Yihan, ZHANG Hang, ZHU Zejie, WANG Jiangying, CAO Fahe. Research Progress of Monitoring Ion Concentration Variation of Micro-areas in Corrosion Crevice Interior[J]. 中国腐蚀与防护学报, 2023, 43(4): 828-836.
[3] DENG Chengman, LIU Zhe, XIA Da-Hai, HU Wenbin. Localized Corrosion Mechanism of 5083-H111 Al Alloy in Simulated Dynamic Seawater Zone[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[4] LIU Ming, WANG Jie, ZHU Chunhui, ZHANG Yanxiao. Electrochemical Corrosion Behavior of 3D-printed NiTi Shape Memory Alloy in a Simulated Oral Environment[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[5] CHEN Qingguo, TANG Quanhong, QIN Zhenjie, LI Yifan, LI Lei, LI Xuanpeng, YUAN Juntao, SU Hang, FU Anqing. Corrosion Behavior of Hot-dip Aluminum Coating in “High Temperature-salt Deposited-CO2/O2” Multi-degree Coupling Environment[J]. 中国腐蚀与防护学报, 2023, 43(3): 569-577.
[6] YUAN Shicheng, WU Yanfeng, XU Changhui, WANG Xingqi, LENG Zhe, YANG Yange. Influence of Polyhydroxy Hyperdispersant on Anti-corrosion Property of Waterborne Epoxy Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 289-300.
[7] WANG Tong, WANG Wei. Distribution of Relaxation Time of Polydimethylsiloxane Coatings During Self-healing Process[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[8] MAO Yingchang, ZHU Yu, SUN Shengkai, QIN Zhenbo, XIA Da-Hai, HU Wenbin. Localized Corrosion of 5083 Al-alloy in Simulated Marine Splash Zone[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.
[9] WANG Xiao, LIU Feng, LI Yan, ZHANG Wei, LI Xiangbo. Corrosion Behavior of B10 Cu-Ni Alloy Pipe in Static and Dynamic Seawater[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[10] LI Han, LIU Yuanhai, ZHAO Lianhong, CUI Zhongyu. Corrosion Behavior of 300M Ultra High Strength Steel in Simulated Marine Environment[J]. 中国腐蚀与防护学报, 2023, 43(1): 87-94.
[11] GAO Zhiyue, JIANG Bo, FAN Zhibin, WANG Xiaoming, LI Xingeng, ZHANG Zhenyue. Corrosion Behavior of Typical Grounding Materials in Artificial Alkaline Soil Solution[J]. 中国腐蚀与防护学报, 2023, 43(1): 191-196.
[12] ZHOU Mengxin, WU Jun, FAN Zhibin, ZHOU Xuejie, CHEN Hao. Current Situation and Prospect of On-line Monitoring Technology for Atmospheric Corrosion Testing of Metallic Materials[J]. 中国腐蚀与防护学报, 2023, 43(1): 38-46.
[13] CHEN Tingting, WU Xiaolei, HAN Peide. Gradient Nanotwin Structure Prepared by SMAT Technology on S31254 Super Austenitic Stainless Steel Surface and Its Corrosion Behavior in 10%NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(6): 973-978.
[14] WANG Tengyu, ZHANG Zhenggui, LU Weizhong, WU Xige. Effect of Alternating Pressure on Electrochemical Behavior of Solvent-free Epoxy Coating in Simulated Ultra-deep Sea Environment[J]. 中国腐蚀与防护学报, 2022, 42(6): 929-938.
[15] LV Yingxi. Analysis of Cl- Corrosion Resistance of High Mo Super Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2022, 42(5): 765-770.
No Suggested Reading articles found!