|
|
A Novel Technique of Electrochemical-inductively Coupled Plasma Atomic Emission Spectrometry and Its Application in Corrosion Research |
YU Yingjie, LI Ying( ) |
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
|
Abstract To improve breadth and depth of corrosion theory for metal materials, a combined technique of electrochemical-inductively coupled plasma atomic emission spectrometry (ICP-OES) was developed in recent years. In this technique, an inductively coupled plasma atomic emission spectrometer was coupled to the downstream of a home-built electrochemical flow cell to track the concentration transient of the corrosion products dissolved in the corrosion medium, so that the elemental dissolution rates of metal electrode could be determined in real time. The working principles and the development of this technology were introduced briefly and the applications of this technology in metal corrosion research were summarized at present. Finally, the existing problems and future directions for development of this technique were pointed out.
|
Received: 29 August 2022
32134.14.1005.4537.2022.265
|
|
Fund: National Natural Science Foundation of China(51871227);National Natural Science Foundation of China(51671198) |
Corresponding Authors:
LI Ying, E-mail: liying@imr.ac.cn
|
1 |
Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijing: Chemical Industry Press, 2008
|
|
曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008
|
2 |
Huo D X, Liang J L, Li H, et al. Research progress of application of electrochemical corrosion technology [J]. Hot Work. Technol., 2017, 46(10) : 18
|
|
霍东兴, 梁精龙, 李 慧 等. 腐蚀电化学技术应用研究进展 [J]. 热加工工艺, 2017, 46(10): 18
|
3 |
Boucherit N, Goff A H L, Joiret S. Influence of Ni, Mo, and Cr on pitting corrosionof steels studied by Raman spectroscopy [J]. Corrosion, 1992, 48: 569
doi: 10.5006/1.3315974
|
4 |
Mechehoud F, Benaioun N E, Hakiki N E, et al. Thermally oxidized Inconel 600 and 690 nickel-based alloys characterizations by combination of global photoelectrochemistry and local near-field microscopy techniques (STM, STS, AFM, SKPFM) [J]. Appl. Surf. Sci., 2018, 433: 66
doi: 10.1016/j.apsusc.2017.10.094
|
5 |
Martinez-Lombardia E, Lapeire L, Maurice V, et al. Use of local electrochemical methods (SECM, EC-STM) and AFM to differentiate microstructural effects (EBSD) on very pure copper [J]. Corros. Sci. Technol., 2017, 16: 1
doi: 10.14773/cst.2017.16.1.1
|
6 |
Li S X, Hihara L H. In situ Raman spectroscopic identification of rust formation in Evans' droplet experiments [J]. Electrochem. Commun., 2012, 18: 48
doi: 10.1016/j.elecom.2012.02.014
|
7 |
Maurice V, Marcus P. Progress in corrosion science at atomic and nanometric scales [J]. Prog. Mater. Sci., 2018, 95: 132
doi: 10.1016/j.pmatsci.2018.03.001
|
8 |
Mahato N, Singh M M. Investigation of passive film properties and pitting resistance of AISI 316 in aqueous ethanoic acid containing chloride ions using electrochemical impedance spectroscopy(EIS) [J]. Port. Electrochim. Acta, 2011, 29: 233
doi: 10.4152/pea.201104233
|
9 |
Nieuwoudt M K, Comins J D, Cukrowski I. Analysis of the composition of the passive film on iron under pitting conditions in 0.05 M NaOH/NaCl using Raman microscopy in situ with anodic polarisation and MCR-ALS [J]. J. Raman. Spectrosc., 2012, 43: 928
doi: 10.1002/jrs.3109
|
10 |
Revilla R I, Liang J W, Godet S, et al. Local corrosion behavior of additive manufactured AlSiMg alloy assessed by SEM and SKPFM [J]. J. Electrochem. Soc., 2016, 164: C27
doi: 10.1149/2.0461702jes
|
11 |
Sherif E S M, Erasmus R M, Comins J D. In situ Raman spectroscopy and electrochemical techniques for studying corrosion and corrosion inhibition of iron in sodium chloride solutions [J]. Electrochim. Acta, 2010, 55: 3657
doi: 10.1016/j.electacta.2010.01.117
|
12 |
Zhang F, Nilsson J O, Pan J S. In situ and operando AFM and EIS studies of anodization of Al 6060: influence of intermetallic particles [J]. J. Electrochem. Soc., 2016, 163: C609
doi: 10.1149/2.0061610jes
|
13 |
Bernard M C, Goff A H L, Massinon D, et al. Underpaint corrosion of zinc-coated steel sheet studied by in situ raman spectroscopy [J]. Corros. Sci., 1993, 35: 1339
doi: 10.1016/0010-938X(93)90356-L
|
14 |
Örnek C, Engelberg D L. SKPFM measured Volta potential correlated with strain localisation in microstructure to understand corrosion susceptibility of cold-rolled grade 2205 duplex stainless steel [J]. Corros. Sci., 2015, 99: 164
doi: 10.1016/j.corsci.2015.06.035
|
15 |
Voith M, Luckeneder G, Hassel A W. In situ identification and quantification in a flow cell with AAS downstream analytics [J]. J. Solid State Electrochem., 2012, 16: 3473
doi: 10.1007/s10008-012-1887-0
|
16 |
Klemm S O, Topalov A A, Laska C A, et al. Coupling of a high throughput microelectrochemical cell with online multielemental trace analysis by ICP-MS [J]. Electrochem. Commun., 2011, 13: 1533
doi: 10.1016/j.elecom.2011.10.017
|
17 |
Hou L F, Raveggi M, Chen X B, et al. Investigating the passivity and dissolution of a corrosion resistant Mg-33at.%Li alloy in aqueous chloride using online ICP-MS [J]. J. Electrochem. Soc., 2016, 163: C324
doi: 10.1149/2.0871606jes
|
18 |
Hou X D, Jones B T. Inductively Coupled Plasma/Optical Emission Spectrometry [A]. Meyers R A. Encyclopedia of Analytical Chemistry, Wiley, 2000
|
19 |
Boss C B, Fredeen K J. Concepts, Instrumentation and Techniques in Inductively Coupled Plasma Optical Emission Spectrometry [M]. 3rd ed. Waltham: Perkin Elmer, 1997
|
20 |
Xin R X. Plasma Emission Spectrum Analysis [M]. 2nd ed. Beijing: Chemical Industry Press, 2011
|
|
辛仁轩. 等离子体发射光谱分析 [M]. 第2版. 北京: 化学工业出版社, 2011
|
21 |
Ogle K, Weber S. Anodic dissolution of 304 stainless steel using atomic emission spectroelectrochemistry [J]. J. Electrochem. Soc., 2000, 147: 1770
doi: 10.1149/1.1393433
|
22 |
Ogle K, Baeyens J, Swiatowska J, et al. Atomic emission spectroelectrochemistry applied to dealloying phenomena: I. The formation and dissolution of residual copper films on stainless steel [J]. Electrochim. Acta, 2009, 54: 5163
doi: 10.1016/j.electacta.2009.01.037
|
23 |
Mercier D, Van Overmeere Q, Santoro R, et al. In-situ optical emission spectrometry during galvanostatic aluminum anodising [J]. Electrochim. Acta, 2011, 56: 1329
doi: 10.1016/j.electacta.2010.10.092
|
24 |
Shkirskiy V, Maciel P, Deconinck J, et al. On the time resolution of the atomic emission spectroelectrochemistry method [J]. J. Electrochem. Soc., 2016, 163: C37
doi: 10.1149/2.0991602jes
|
25 |
Yan Y M, Zhou P, Gharbi O, et al. Investigating ion release using inline ICP during in situ scratch testing of an Mg-Li(-Al-Y-Zr) alloy [J]. Electrochem. Commun., 2019, 99: 46
doi: 10.1016/j.elecom.2019.01.001
|
26 |
Yu Y J, Li Y. New insight into the negative difference effect in aluminium corrosion using in-situ electrochemical ICP-OES [J]. Corros. Sci., 2020, 168: 108568
doi: 10.1016/j.corsci.2020.108568
|
27 |
Ogle K. Atomic Emission Spectroelectrochemistry: a new look at the corrosion, dissolution & passivation of complex materials [J]. Corros. Mater., 2012, 37: 60
|
28 |
Ogle K. Atomic emission spectroelectrochemistry: real-time rate measurements of dissolution, corrosion, and passivation [J]. Corrosion, 2019, 75: 1398
doi: 10.5006/3336
|
29 |
Zhou P, Hutchison M J, Scully J R, et al. The anodic dissolution of copper alloys: pure copper in synthetic tap water [J]. Electrochim. Acta, 2016, 191: 548
doi: 10.1016/j.electacta.2016.01.093
|
30 |
Serdechnova M, Volovitch P, Brisset F, et al. On the cathodic dissolution of Al and Al alloys [J]. Electrochim. Acta, 2014, 124: 9
doi: 10.1016/j.electacta.2013.09.145
|
31 |
Światowska J, Volovitch P, Ogle K. The anodic dissolution of Mg in NaCl and Na2SO4 electrolytes by atomic emission spectroelectrochemistry [J]. Corros. Sci., 2010, 52: 2372
doi: 10.1016/j.corsci.2010.02.038
|
32 |
Rossrucker L, Samaniego A, Grote J P, et al. The pH dependence of magnesium dissolution and hydrogen evolution during anodic polarization [J]. J. Electrochem. Soc., 2015, 162: C333
doi: 10.1149/2.0621507jes
|
33 |
Lebouil S, Gharbi O, Volovitch P, et al. Mg dissolution in phosphate and chloride electrolytes: insight into the mechanism of the negative difference effect [J]. Corrosion, 2015, 71: 234
doi: 10.5006/1459
|
34 |
Han J, Vivier V, Ogle K. Refining anodic and cathodic dissolution mechanisms: combined AESEC-EIS applied to Al-Zn pure phase in alkaline solution [J]. npj Mater. Degrad., 2020, 4: 19
doi: 10.1038/s41529-020-0123-0
|
35 |
Gharbi O, Birbilis N, Ogle K. In-situ monitoring of alloy dissolution and residual film formation during the pretreatment of Al-Alloy AA2024-T3 [J]. J. Electrochem. Soc., 2016, 163: C240
doi: 10.1149/2.1121605jes
|
36 |
Zhou P, Erning J W, Ogle K. Interactions between elemental components during the dealloying of Cu-Zn alloys [J]. Electrochim. Acta, 2019, 293: 290
doi: 10.1016/j.electacta.2018.09.181
|
37 |
Lebouil S, Tardelli J, Rocca E, et al. Dealloying of Al2Cu, Al7Cu2Fe, and Al2CuMg intermetallic phases to form nanoparticulate copper films [J]. Mater. Corros., 2014, 65: 416
|
38 |
Jiang L, Wolpers M, Volovitch P, et al. The degradation of phosphate conversion coatings by electrochemically generated hydroxide [J]. Corros. Sci., 2012, 55: 76
doi: 10.1016/j.corsci.2011.10.004
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|