Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (4): 837-846    DOI: 10.11902/1005.4537.2022.296
Current Issue | Archive | Adv Search |
Localized CO2 Corrosion of X70 Steel in Water Accumulation Zone of Wet Gas Pipelines
LI Qiang1(), LU Cheng2, TANG Yinghao3, TANG Jianfeng2, LIU Bingcheng1
1.Institute of Climate and Energy Sustainable Development, Qingdao University of Science and Technology, Qingdao 266061, China
2.College of Pipeline and Civil Engineering, University of China Petroleum (East China), Qingdao 266580, China
3.China Petroleum Pipeline Engineering Corporation, Langfang 065099, China
Download:  HTML  PDF(12151KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The free corrosion potential and galvanic corrosion current of different spots of an inclined pipeline were assessed via a home-made device, aiming to simulate the CO2 induced localized-corrosion emerged at the area with standing water of an inclined pipeline of X70 steel for transporting wet gas, with an electrode composed with a bundle of isolated wires of matrix-like distribution as measuring electrodes. So that to illustrate the relevant localized corrosion mechanism. The results showed that localized corrosion happens for different pipeline structure by different gas flow conditions. What is more, the localized corrosion became more concentrated when the exposure time was elongated. The most severe localized corrosion was seen when the gas flow velocity was 2 m/s and the pipeline had an inclined angle of 30°. Amongst the three factors, including the extent of non-uniformity of water film thickness, frequency of waves arisen by the high velocity gas flow and the formation of corrosion film, that affected the corrosion process, wave frequency and corrosion film had the most influential effect.

Key words:  CO2 localized corrosion      water accumulation zone      non-steady flow      water film      X70 steel      corrosion product     
Received:  24 September 2022      32134.14.1005.4537.2022.296
ZTFLH:  TG174  
Fund: Natural Science Foundation of Shandong Province(ZR2019BEE040);Fundamental Research Funds for Central Universities(18CX02001A)
Corresponding Authors:  LI Qiang, E-mail: qiangli@qust.edu.cn   

Cite this article: 

LI Qiang, LU Cheng, TANG Yinghao, TANG Jianfeng, LIU Bingcheng. Localized CO2 Corrosion of X70 Steel in Water Accumulation Zone of Wet Gas Pipelines. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 837-846.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.296     OR     https://www.jcscp.org/EN/Y2023/V43/I4/837

Fig.1  Schematic diagram of CO2 local corrosion test device in the simulated water accumulation area
Fig.2  Schematic diagram of experimental wire beam electrode
Fig.3  Test results of coupling current at different inclination angles: (a) 15°, (b) 30°, (c) 45°
Fig.4  Flow state of liquid accumulation in tubes with different inclination angles: distribution of water film in the pipe at 15° (a), 30° (b), 45° (c) and frequency of waves flowing through the electrodes at different inclination angles (d)
Fig.5  Test results of coupling current at different gas flow rates: (a) 4 m/s, (b) 6 m/s
Fig.6  Flow state of liquid accumulation in pipes with different gas velocities: distribution of water film in the pipe at 4 m/s (a), 6 m/s (b) and frequency of waves flowing through the electrodes at different gas velocities (c)
Fig.7  Coupling current distribution under different corrosion time: (a) 24 h, (b) 168 h
Fig.8  EIS of electrode wire at typical location (a) and equivalent circuit diagram (b)
No.RSΩ·cm2CPE-Y0Ω-1·s-n ·cm-2CPE-nRctΩ·cm2LH·cm2RLΩ·cm2
1410.950.0011390.897496.92722.2211.9
2212.480.0018490.894133.31143417.8
519.4290.0018570.855172.93547174.2
Table 1  EIS fitting results of wire beam electrodes at different positions
Fig.9  Corrosion morphology of wire beam electrode C after different corrosion time: (a) fresh surface, (b) 24 h, (c) 168 h
Fig.10  Corrosion morphology of electrode wires at different positions after 168 h corrosion: (a) electrode A, (b) electrode B, (c) electrode C
1 Jin L. Corrosion evaluation of recycling pipe section from a subsea gas pipeline [J]. Corros. Prot., 2017, 38: 301
金 磊. 某海底输气管道回收段的腐蚀评价 [J]. 腐蚀与防护, 2017, 38: 301
2 Wu Q Y, Li C G, Yang J H, et al. Analysis and assessment of the result of Bonan oil & gas field subsea pipeline in-line inspection [J]. Mar. Sci., 2012, 36(10): 107
吴秋云, 李成钢, 杨敬红 等. 渤南油气田海底管道内检测结果分析及评价 [J]. 海洋科学, 2012, 36(10): 107
3 Rastogi A, Fan Y L. Experimental and modeling study of onset of liquid accumulation [J]. J. Nat. Gas Sci. Eng., 2020, 73: 103064
doi: 10.1016/j.jngse.2019.103064
4 NACE SP0110-2018 Wet gas internal corrosion direct assessment methodology for pipelines [S]. NACE International, 2018
5 Hauguel R, Lajoie A, Carimalo F, et al. Water accumulation assessment in wet gas pipelines [A]. CORROSION 2008 [C]. New Orleans, Louisiana: NACE International, 2008
6 Zhang H Q, Sarica C. Low liquid loading gas/liquid pipe flow [J]. J. Nat. Gas Sci. Eng., 2011, 3: 413
doi: 10.1016/j.jngse.2011.03.001
7 Guan X R, Jin Y H, Wang J J, et al. Progress in investigating gas-liquid flow and CO2 corrosion in gas transmission pipelines with low liquid loading [J]. Chem. Eng. Mach., 2017, 44: 245
管孝瑞, 金有海, 王建军 等. 低含液输气管线内两相流动及其CO2腐蚀研究进展 [J]. 化工机械, 2017, 44: 245
8 Wang R L, Lee B A, Lee J S, et al. Analytical estimation of liquid film thickness in two-phase annular flow using electrical resistance measurement [J]. Appl. Math. Model., 2012, 36: 2833
doi: 10.1016/j.apm.2011.09.069
9 Li J B, Wang S L, Chen H, et al. Numerical simulation of slug formation characteristics of the liquid loading in the gas-liquid multiphase pipeline in rolling terrain [J]. Oil-Gas Field Surf. Eng., 2017, 36(10): 12
李靖博, 王树立, 陈 虎 等. 气液混输起伏管积液起塞特征数值模拟 [J]. 油气田地面工程, 2017, 36(10): 12
10 Liu X Q, Li Y X, Li S L, et al. Liquid holdup distribution laws and critical inclination angle model of undulating wet gas pipelines [J]. Oil Gas Storage Transp., 2017, 36: 177
刘晓倩, 李玉星, 李顺丽 等. 起伏湿气管道持液率分布规律及临界倾角模型 [J]. 油气储运, 2017, 36: 177
11 Yang Y, Li J B, Wang S L, et al. Gas-liquid two-phase flow behavior in terrain-inclined pipelines for gathering transport system of wet natural gas [J]. Int. J. Pres. Ves. Pip., 2018, 162: 52
doi: 10.1016/j.ijpvp.2018.03.005
12 Yang Y, Li J B, Wang S L, et al. Understanding the formation process of the liquid slug in a hilly-terrain wet natural gas pipeline [J]. J. Environ. Chem. Eng., 2017, 5: 4220
doi: 10.1016/j.jece.2017.08.010
13 Wang D X, Hu Q H, Li Y X, et al. Study on the characteristics of slug flow in V-type pipeline with great angle [J]. Sci. Technol. Eng., 2020, 20: 11574
王冬旭, 胡其会, 李玉星 等. 大起伏角度下V形管道段塞流流型特性 [J]. 科学技术与工程, 2020, 20: 11574
14 Wang B C. Liquid-carrying theory and drainage technology of undulating wet-gas pipelines [D]. Qingdao: China University of Petroleum (East China), 2018
王报春. 起伏湿气集输管道携液理论与排液技术研究 [D]. 青岛: 中国石油大学(华东), 2018
15 Jepson W P, Kang C, Wilkens R. The effect of slug frequency on corrosion in high pressure, inclined pipelines [A]. CORROSION 96 [C]. Denver, Colorado: NACE International, 1996
16 Cui M W. Study on CO2 internal corrosion and residual strength of multiphase offshore pipeline [D]. Qingdao: China University of Petroleum (East China), 2014
崔铭伟. 多相流海管CO2内腐蚀及剩余强度研究 [D]. 青岛: 中国石油大学(华东), 2014
17 Zheng D H, Che D F, He L, et al. Effect of slug flow on CO2 corrosion of pipeline in oil and gas industry [J]. Corros. Prot., 2007, 28: 77
郑东宏, 车得福, 贺 林 等. 油气管道CO2腐蚀过程中弹状流的影响 [J]. 腐蚀与防护, 2007, 28: 77
18 Zheng D H, Che D F, Liu Y H. Experimental investigation on gas-liquid two-phase slug flow enhanced carbon dioxide corrosion in vertical upward pipeline [J]. Corros. Sci., 2008, 50: 3005
doi: 10.1016/j.corsci.2008.08.006
19 Green A S, Johnson B V, Choi H J. Flow-related corrosion in large-diameter multiphase flowlines [J]. SPE Prod. Facil., 1993, 8: 97
doi: 10.2118/20685-PA
20 Yang Y. CO2 corrosion behavior of subsea wet gas pipelines under different wetting conditions [D]. Chengdu: West South Petroleum University, 2019
杨 雨. 不同润湿状态下海底湿气管道CO2腐蚀行为研究 [D]. 成都: 西南石油大学, 2019
21 China University of Petroleum (East China). Multi-channel galvanic corrosion test system and method based on micro electrode array [P]. Chin Patent, 201210477941.5, 2013
中国石油大学(华东). 基于微电极阵列的多通道电偶腐蚀测试系统及测试方法 [P]. 中国专利, 201210477941.5, 2013)
22 Dong Z H, Shi W, Guo X P. Localized corrosion inhibition of carbon steel in carbonated concrete pore solutions using wire beam electrodes [J]. Acta Phys.-Chim. Sin., 2011, 27: 127
doi: 10.3866/PKU.WHXB20110110
董泽华, 石 维, 郭兴蓬. 用丝束电极研究模拟碳化混凝土孔隙液中缓蚀剂对碳钢局部腐蚀的抑制行为 [J]. 物理化学学报, 2011, 27: 127
23 Bockris J O M, Drazic D, Despic A R. The electrode kinetics of the deposition and dissolution of iron [J]. Electrochim. Acta, 1961, 4: 325
doi: 10.1016/0013-4686(61)80026-1
24 Zhang G A, Cheng Y F. On the fundamentals of electrochemical corrosion of X65 steel in CO2-containing formation water in the presence of acetic acid in petroleum production [J]. Corros. Sci., 2009, 51: 87
doi: 10.1016/j.corsci.2008.10.013
25 Xie D M, Tong S P, Cao J L. Fundamental Knowledge of Applied Electrochemistry [M]. Beijing: Chemical Industry Press, 2013
谢德明, 童少平, 曹江林. 应用电化学基础 [M]. 北京: 化学工业出版社, 2013
26 Li Q, Zhang Y Y, Liu G, et al. CO2 corrosion mechanism of pure Fe under action of uniform water film [J]. J. China Univ. Pet. (Ed. Nat. Sci.), 2020, 44(3): 155
李 强, 张玉瑜, 刘 刚 等. 纯铁在均匀液膜下的CO2腐蚀机制 [J]. 中国石油大学学报(自然科学版), 2020, 44(3): 155
27 Bai H T, Yang M, Dong X W, et al. Research progress on CO2 corrosion product scales of carbon steels [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 295
白海涛, 杨 敏, 董小卫 等. CO2腐蚀产物膜的研究进展 [J]. 中国腐蚀与防护学报, 2020, 40: 295
doi: 10.11902/1005.4537.2019.150
28 Barker R, Burkle D, Charpentier T, et al. A review of iron carbonate (FeCO3) formation in the oil and gas industry [J]. Corros. Sci., 2018, 142: 312
doi: 10.1016/j.corsci.2018.07.021
29 Han J B, Yang Y, Brown B, et al. Electrochemical investigation of localized CO2 corrosion on mild steel [A]. CORROSION 2007 [C]. Houston, Texas: NACE International, 2007
30 Ming N X, Wang Q S, He C, et al. Effect of temperature on corrosion behavior of X70 steel in an artificial CO2-containing formation water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 233
明男希, 王岐山, 何 川 等. 温度对X70钢在含CO2地层水中腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2021, 41: 233
doi: 10.11902/1005.4537.2020.049
31 Li Q, Cheng Y F. Modeling of corrosion of steel tubing in CO2 storage [J]. Greenhouse Gas. Sci. Technol., 2016, 6: 797
doi: 10.1002/ghg.2016.6.issue-6
32 Ge P L, Zeng W G, Xiao W W, et al. Effect of applied stress and medium flow on corrosion behavior of carbon steel in H2S/CO2 coexisting environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 271
葛鹏莉, 曾文广, 肖雯雯 等. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 271
doi: 10.11902/1005.4537.2020.025
33 Zhao Y, Cao J Y, Fang Z G, et al. Corrosion behavior of A517Gr.Q marine steel in simulated corrosive condition of marine splashing zone [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 921
[1] ZHOU Zhiping, WU Dakang, ZHANG Hongfu, ZHANG Lei, LI Mingxing, ZHANG Zhixin, ZHONG Xiankang. Tensile Property of L80 Steel in Air at 25-350 ℃ and Its Corrosion Behavior in Simulated Casing Service Conditions at 150-350 ℃[J]. 中国腐蚀与防护学报, 2023, 43(3): 601-610.
[2] XING Xuesong, FAN Baitao, ZHU Xinyu, ZHANG Junying, CHEN Changfeng. Corrosion Characteristics of P110SS Casing Steel for Ultra-deep Well in Artificial Formation Water with Low H2S and High CO2 Content[J]. 中国腐蚀与防护学报, 2023, 43(3): 611-618.
[3] WANG Xiao, LIU Feng, LI Yan, ZHANG Wei, LI Xiangbo. Corrosion Behavior of B10 Cu-Ni Alloy Pipe in Static and Dynamic Seawater[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[4] LI Han, LIU Yuanhai, ZHAO Lianhong, CUI Zhongyu. Corrosion Behavior of 300M Ultra High Strength Steel in Simulated Marine Environment[J]. 中国腐蚀与防护学报, 2023, 43(1): 87-94.
[5] WANG Xiaohong, LI Zishuo, TANG Yufeng, TAN Hao, JIANG Yangang. Influence of Cr Content on Characteristics of Corrosion Product Film Formed on Several Steels in Artifitial Stratum Waters Containing CO2-H2S-Cl-[J]. 中国腐蚀与防护学报, 2022, 42(6): 1043-1050.
[6] XUE Fang, LIU Liangyu, TAN Long. Aerobic Corrosion Process of Q235 Steel in NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2022, 42(5): 771-778.
[7] FENG Li, ZHANG Shengtao, ZHENG Siyuan, HU Zhiyong, ZHU Hailin, MA Xuemei. Effect of Halogen Anions on Corrosion Inhibition of Ionic Liquids[J]. 中国腐蚀与防护学报, 2022, 42(5): 791-797.
[8] WANG Tong, MENG Huimin, GE Pengfei, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Electrochemical Corrosion Behavior of 2Cr-1Ni-1.2Mo-0.2V Steel in NH4H2PO4 Solution[J]. 中国腐蚀与防护学报, 2022, 42(4): 551-562.
[9] LI Hongjin, WANG Qishan, LIAO Zihan, SUN Xiangrui, SUN Hui, ZHANG Xinyang, CHEN Xu. Electrochemical Noise Behavior of X70 Steel and Its Weld in Cl--containing High pH Solution[J]. 中国腐蚀与防护学报, 2022, 42(1): 60-66.
[10] WANG Jiaming, YANG Haodong, DU Min, PENG Wenshan, CHEN Hanlin, GUO Weimin, LIN Cunguo. Corrosion of B10 Cu-Ni Alloy in Seawater Polluted by High Concentration of NH4+[J]. 中国腐蚀与防护学报, 2021, 41(5): 609-616.
[11] CHEN Wenjuan, FANG Lian, PAN Gang. Corrosion Evolution Characteristics of Q235B Steel in O3/SO2 Composite Atmosphere[J]. 中国腐蚀与防护学报, 2021, 41(4): 450-460.
[12] LIN Zhaohui, MING Nanxi, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Hydrostatic Pressure on Corrosion Behavior of X70 Steel in Simulated Sea Water[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[13] ZHANG Yifan, YUAN Xiaoguang, HUANG Hongjun, ZUO Xiaojiao, CHENG Yulin. Corrosion Behavior of Cu-Al Laminated Board in Neutral Salt Fog Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[14] BAI Haitao, YANG Min, DONG Xiaowei, MA Yun, WANG Rui. Research Progress on CO2 Corrosion Product Scales of Carbon Steels[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[15] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
No Suggested Reading articles found!