|
|
Oxidation Behavior of TP439 Stainless Steel in Water Vapor at 800 ℃ |
LIU Huanhuan1, LIU Guangming1( ), LI Futian1, MENG Lingqi2, XIAHOU Junzhao2, GU Jialei2 |
1.School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China 2.Shanghai Electric Nuclear Power Equipment Co. Ltd., Shanghai 201306, China |
|
|
Abstract The oxidation behavior of TP439 stainless steel in water vapor was studied by means of intermittent weighing method, field emission scanning electron microscope (FE-SEM) and X-ray diffractometer. In the initial oxidation stage, the formed oxide scale of TP439 stainless steel is very thin, the oxidation rate is fast, the oxidation kinetics conforms to the linear oxidation law with a linear rate constant kl of 5.214×10-2, the oxidation process is controlled by the interface reaction; with the increase of oxidation time, the oxide scale gradually thickens, which hinders the inward diffusion of oxygen ions and the outward diffusion of metal ions, the control step of the oxidation process is changed from interface reaction control to diffusion control; the oxidation kinetics in the second stage follows a parabolic law with a parabolic rate constant kp of 1.54×10-3, the oxidation control step is diffusion control. The main components of TP439 stainless steel oxidation products are (Cr, Fe)2O3 and a small amount of Cr2O3, Fe2O3, FeCr2O4 spinel oxides. In the early stage of oxidation, there are more oxide particles distributed along the grain boundary on the surface of the steel. This is because the grain boundary is the fast diffusion channel of elements, therefore, network-like oxides along the grain boundary emerges on the steel surface.
|
Received: 13 May 2022
32134.14.1005.4537.2022.149
|
|
Fund: National Natural Science Foundation of China(51961028) |
About author: LIU Guangming, E-mail: gemliu@126.com
|
[1] |
Zhao Y L, Fan P P, Wang C Y, et al. Fatigue lifetime assessment on a high-pressure heater in supercritical coal-fired power plants during transient processes of operational flexibility regulation [J]. Appl. Therm. Eng., 2019, 156: 196
doi: 10.1016/j.applthermaleng.2019.04.066
|
[2] |
Tao R, Xiao R F, Liu W C. Investigation of the flow characteristics in a main nuclear power plant pump with eccentric impeller [J]. Nucl. Eng. Des., 2018, 327: 70
doi: 10.1016/j.nucengdes.2017.11.040
|
[3] |
Liu E J. Application of 439 ferrite tube to feedwater heater [J]. Power Stat. Auxili. Equip., 2008, 29(3): 26
|
|
(刘尔静. 铁素体439焊管在给水加热器中的应用 [J]. 电站辅机, 2008, 29(3): 26)
|
[4] |
Mo Y M, Gong Y, Yang Z G. Failure analysis on the O-ring of radial thrust bearing room of main pump in a nuclear power plant [J]. Eng. Fail. Anal., 2020, 115: 104673
doi: 10.1016/j.engfailanal.2020.104673
|
[5] |
Wang J W, Liu D M. Analysis on the larger drain subcooler approach of high pressure heater and its countermeasure [J]. Power Stat. Auxil. Equip., 2010, 31(1): 5
|
|
(王继伟, 刘瑞梅. 高压加热器疏水端差偏大原因分析及应对策略 [J]. 电站辅机, 2010, 31(1): 5)
|
[6] |
Imada N, Kitano K, Tanaka K. R&D of the gas engine heat pump water heater and energy evaluation of the system [A]. MatsumotoM, UmedaY, Masui, K, et al. Design for Innovative Value Towards a Sustainable Society [M]. Dordrecht: Springer, 2012: 127
|
[7] |
Zhao H, Wong Z M, Li B. Leakage of HP feedwater heater and preventive measures [J]. Power Syst. Eng., 2000, 16: 298
|
|
(赵辉, 翁志明, 李波. 高压加热器管子泄漏原因分析和防止措施 [J]. 电站系统工程, 2000, 16: 298)
|
[8] |
Yuan J T, Wu X M, Wang W, et al. Effect of grain size on oxidation of heat-resistant steels in high temperature water steam [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 257
|
|
(袁军涛, 吴细毛, 王文 等. 晶粒尺寸对耐热钢在高温水蒸汽中的氧化行为的影响 [J]. 中国腐蚀与防护学报, 2013, 33: 257)
|
[9] |
Li Y, Wang Y H, Cao L H, et al. Modeling for the performance evaluation of 600 MW supercritical unit operating No.0 high pressure heater [J]. Energy, 2018, 149: 639
doi: 10.1016/j.energy.2018.01.103
|
[10] |
Sabioni A C S, Malheiros E A, Ji V, et al. Ion diffusion study in the oxide layers due to oxidation of AISI 439 ferritic stainless steel [J]. Oxid. Met., 2014, 81: 407
doi: 10.1007/s11085-013-9451-6
|
[11] |
Rao M A, Babu R S, Kumar M V P. Stress corrosion cracking failure of a SS 316L high pressure heater tube [J]. Eng. Fail. Anal., 2018, 90: 14
doi: 10.1016/j.engfailanal.2018.03.013
|
[12] |
Xu W M, Zhan J, Zhang W X, et al. SCC behavior of TP439 stainless steel in high temperature and high pressure water [J]. Corros. Prot., 2016, 37: 723
|
|
(徐为民, 詹静, 张微啸 等. TP439不锈钢在高温高压水中的应力腐蚀开裂行为 [J]. 腐蚀与防护, 2016, 37: 723)
|
[13] |
Zhang D Q, Liu G M, Zhao G Q, et al. Cyclic oxidation behavior of Fe-9Cr-1Mo steel in water vapor atmosphere [J]. J. Cent. South Univ. Technol., 2009, 16: 535
doi: 10.1007/s11771-009-0089-0
|
[14] |
Liu G M, Wang C F, Liu G, et al. Oxidation behavior of T91 steel in water vapor atmosphere at 750 ℃ [J]. Adv. Mater. Res., 2014, 941-944: 193
|
[15] |
Álvarez-Fernández M, Del Portillo-Valdés L, Alonso-Tristán C. Thermal analysis of closed feedwater heaters in nuclear power plants [J]. Appl. Therm. Eng., 2014, 68: 45
doi: 10.1016/j.applthermaleng.2014.04.006
|
[16] |
Cashell K A, Baddoo N R. Ferritic stainless steels in structural applications [J]. Thin. Wall. Struct., 2014, 83: 169
doi: 10.1016/j.tws.2014.03.014
|
[17] |
Jiang J W, Liu X, Shi Z H, et al. Research on properties of SA803TP439 heat exchange tubes for high pressure heater in nuclear power plant [J]. Found. Technol., 2014, 35: 147
|
|
(姜家旺, 刘熙, 施震灏 等. 核电厂高压加热器SA803TP439换热管的性能研究 [J]. 铸造技术, 2014, 35: 147)
|
[18] |
Ren Y F. Evaluation on TP439 welded tube for high-pressure feedwater heater of nuclear power stations [J]. Power Equip., 2013, 27: 37
|
|
(任一峰. 核电站高压加热器用TP439焊管的评估 [J]. 发电设备, 2013, 27: 37)
|
[19] |
Chen X M, Hu G H, Yang Y, et al. Application of TP439 welded pipe in high voltage heaters of domestic nuclear power plants [J]. Electr. Eng., 2016, (7): 63
|
|
(陈小萌, 胡光辉, 杨毅 等. TP439焊管在国内核电站高压加热器的应用 [J]. 电工技术, 2016, (7): 63)
|
[20] |
Huntz A M, Reckmann A, Haut C, et al. Oxidation of AISI 304 and AISI 439 stainless steels [J]. Mater. Sci. Eng., 2007, 447A: 266
|
[21] |
Pettersson C, Jonsson T, Proff C, et al. High temperature oxidation of the austenitic (35Fe27Cr31Ni) alloy sanicro 28 in O2+H2O environment [J]. Oxid. Met., 2010, 74: 93
doi: 10.1007/s11085-010-9199-1
|
[22] |
Young D J. High temperature oxidation and corrosion of metals [J]. Corros. Sci., 2008, 1: 3
|
[23] |
Tan F Y. Engineering Thermodynamics [M]. Beijing: Chemical Industry Press, 2010
|
|
(谭羽非. 工程热力学 [M]. 北京: 化学工业出版社, 2010)
|
[24] |
Liang Y J, Che Y C. Inorganic Thermodynamics Databook [M]. Shenyang: Northeastern University Press, 1993
|
|
(梁英教, 车荫昌. 无机物热力学数据手册 [M]. 沈阳: 东北大学出版社, 1993)
|
[25] |
Intiso L, Johansson L G, Canovic S, et al. Oxidation behaviour of sanicro 25 (42Fe22Cr25NiWCuNbN) in O2/H2O mixture at 600 ℃ [J]. Oxid. Met., 2012, 77: 209
doi: 10.1007/s11085-011-9281-3
|
[26] |
Zhang N Q, Yue G Q, Lv F B, et al. Crack growth rate of stress corrosion cracking of Inconel 625 in high temperature steam [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 9
|
|
(张乃强, 岳国强, 吕法彬 等. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究 [J]. 中国腐蚀与防护学报, 2017, 37: 9)
|
[27] |
Othman N K, Zhang J Q, Young D J. Temperature and water vapour effects on the cyclic oxidation behaviour of Fe-Cr alloys [J]. Corros. Sci., 2010, 52: 2827
doi: 10.1016/j.corsci.2010.04.026
|
[28] |
Sabioni A C S, Malheiros E A, Ji V, et al. Determination of oxygen diffusion coefficient in oxidation films of the AISI 439 ferritic stainless steel [J]. Def. Diffu. Forum., 2012, 323-325: 339
|
[29] |
Lobb R C, Evans H E. A determination of the chromium concentration for 'healing' layer formation during the oxidation of chromium-depleted 20cr-25ni-nb stainless steel [J]. Corros. Sci., 1984, 24: 385
doi: 10.1016/0010-938X(84)90065-9
|
[30] |
Yuan J T, Wang W, Zhang H H, et al. Investigation into the failure mechanism of chromia scale thermally grown on an austenitic stainless steel in pure steam [J]. Corros. Sci., 2016, 109: 36
doi: 10.1016/j.corsci.2016.03.021
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|