Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (2): 377-383    DOI: 10.11902/1005.4537.2022.149
Current Issue | Archive | Adv Search |
Oxidation Behavior of TP439 Stainless Steel in Water Vapor at 800 ℃
LIU Huanhuan1, LIU Guangming1(), LI Futian1, MENG Lingqi2, XIAHOU Junzhao2, GU Jialei2
1.School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2.Shanghai Electric Nuclear Power Equipment Co. Ltd., Shanghai 201306, China
Download:  HTML  PDF(5780KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The oxidation behavior of TP439 stainless steel in water vapor was studied by means of intermittent weighing method, field emission scanning electron microscope (FE-SEM) and X-ray diffractometer. In the initial oxidation stage, the formed oxide scale of TP439 stainless steel is very thin, the oxidation rate is fast, the oxidation kinetics conforms to the linear oxidation law with a linear rate constant kl of 5.214×10-2, the oxidation process is controlled by the interface reaction; with the increase of oxidation time, the oxide scale gradually thickens, which hinders the inward diffusion of oxygen ions and the outward diffusion of metal ions, the control step of the oxidation process is changed from interface reaction control to diffusion control; the oxidation kinetics in the second stage follows a parabolic law with a parabolic rate constant kp of 1.54×10-3, the oxidation control step is diffusion control. The main components of TP439 stainless steel oxidation products are (Cr, Fe)2O3 and a small amount of Cr2O3, Fe2O3, FeCr2O4 spinel oxides. In the early stage of oxidation, there are more oxide particles distributed along the grain boundary on the surface of the steel. This is because the grain boundary is the fast diffusion channel of elements, therefore, network-like oxides along the grain boundary emerges on the steel surface.

Key words:  TP439 stainless steel      high temperature oxidation      water vapor      oxidation kinetics     
Received:  13 May 2022      32134.14.1005.4537.2022.149
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51961028)
About author:  LIU Guangming, E-mail: gemliu@126.com

Cite this article: 

LIU Huanhuan, LIU Guangming, LI Futian, MENG Lingqi, XIAHOU Junzhao, GU Jialei. Oxidation Behavior of TP439 Stainless Steel in Water Vapor at 800 ℃. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 377-383.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.149     OR     https://www.jcscp.org/EN/Y2023/V43/I2/377

Fig.1  Oxidation kinetics of TP439 stainless steel in Ar-90%H2O at 800 ℃ for 48 h (a) and 2 h (b)
Fig.2  Fitting results of oxidation kinetics of TP439 stainless steel in Ar-90%H2O at 800 ℃ in the periods of 0-2 h (a) and 2-48 h (b)
Fig.3  XRD patterns of TP439 stainless steel after isothermal oxidation at 800 ℃ for 0-1.5 h (a) and 2-48 h (b)
Fig.4  Surface morphologies (a-h) and corresponding EDS results (i-l) of the samples oxidized at 800 ℃ for 15 min (a), 30 min (b), 45 min (c), 90 min (d), 120 min (e), 240 min (f), 480 min (g) and 720 min (h)
Fig.5  Surface morphologies of the samples oxidized at 800 ℃ for 15 min (a), 30 min (b), 480 min (c) and 720 min (d)
Fig.6  Contents of O, Cr and Fe after oxidation for different time
Fig.7  Schematic diagrams of the growth of oxides along the grain boundaries of TP439 stainless steel in high temperature water vapor: (a) oxides grow along bound aries, (b) netlike oxides, (c) neilike microstructure disappeared, (d) oxide film
[1] Zhao Y L, Fan P P, Wang C Y, et al. Fatigue lifetime assessment on a high-pressure heater in supercritical coal-fired power plants during transient processes of operational flexibility regulation [J]. Appl. Therm. Eng., 2019, 156: 196
doi: 10.1016/j.applthermaleng.2019.04.066
[2] Tao R, Xiao R F, Liu W C. Investigation of the flow characteristics in a main nuclear power plant pump with eccentric impeller [J]. Nucl. Eng. Des., 2018, 327: 70
doi: 10.1016/j.nucengdes.2017.11.040
[3] Liu E J. Application of 439 ferrite tube to feedwater heater [J]. Power Stat. Auxili. Equip., 2008, 29(3): 26
(刘尔静. 铁素体439焊管在给水加热器中的应用 [J]. 电站辅机, 2008, 29(3): 26)
[4] Mo Y M, Gong Y, Yang Z G. Failure analysis on the O-ring of radial thrust bearing room of main pump in a nuclear power plant [J]. Eng. Fail. Anal., 2020, 115: 104673
doi: 10.1016/j.engfailanal.2020.104673
[5] Wang J W, Liu D M. Analysis on the larger drain subcooler approach of high pressure heater and its countermeasure [J]. Power Stat. Auxil. Equip., 2010, 31(1): 5
(王继伟, 刘瑞梅. 高压加热器疏水端差偏大原因分析及应对策略 [J]. 电站辅机, 2010, 31(1): 5)
[6] Imada N, Kitano K, Tanaka K. R&D of the gas engine heat pump water heater and energy evaluation of the system [A]. MatsumotoM, UmedaY, Masui, K, et al. Design for Innovative Value Towards a Sustainable Society [M]. Dordrecht: Springer, 2012: 127
[7] Zhao H, Wong Z M, Li B. Leakage of HP feedwater heater and preventive measures [J]. Power Syst. Eng., 2000, 16: 298
(赵辉, 翁志明, 李波. 高压加热器管子泄漏原因分析和防止措施 [J]. 电站系统工程, 2000, 16: 298)
[8] Yuan J T, Wu X M, Wang W, et al. Effect of grain size on oxidation of heat-resistant steels in high temperature water steam [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 257
(袁军涛, 吴细毛, 王文 等. 晶粒尺寸对耐热钢在高温水蒸汽中的氧化行为的影响 [J]. 中国腐蚀与防护学报, 2013, 33: 257)
[9] Li Y, Wang Y H, Cao L H, et al. Modeling for the performance evaluation of 600 MW supercritical unit operating No.0 high pressure heater [J]. Energy, 2018, 149: 639
doi: 10.1016/j.energy.2018.01.103
[10] Sabioni A C S, Malheiros E A, Ji V, et al. Ion diffusion study in the oxide layers due to oxidation of AISI 439 ferritic stainless steel [J]. Oxid. Met., 2014, 81: 407
doi: 10.1007/s11085-013-9451-6
[11] Rao M A, Babu R S, Kumar M V P. Stress corrosion cracking failure of a SS 316L high pressure heater tube [J]. Eng. Fail. Anal., 2018, 90: 14
doi: 10.1016/j.engfailanal.2018.03.013
[12] Xu W M, Zhan J, Zhang W X, et al. SCC behavior of TP439 stainless steel in high temperature and high pressure water [J]. Corros. Prot., 2016, 37: 723
(徐为民, 詹静, 张微啸 等. TP439不锈钢在高温高压水中的应力腐蚀开裂行为 [J]. 腐蚀与防护, 2016, 37: 723)
[13] Zhang D Q, Liu G M, Zhao G Q, et al. Cyclic oxidation behavior of Fe-9Cr-1Mo steel in water vapor atmosphere [J]. J. Cent. South Univ. Technol., 2009, 16: 535
doi: 10.1007/s11771-009-0089-0
[14] Liu G M, Wang C F, Liu G, et al. Oxidation behavior of T91 steel in water vapor atmosphere at 750 ℃ [J]. Adv. Mater. Res., 2014, 941-944: 193
[15] Álvarez-Fernández M, Del Portillo-Valdés L, Alonso-Tristán C. Thermal analysis of closed feedwater heaters in nuclear power plants [J]. Appl. Therm. Eng., 2014, 68: 45
doi: 10.1016/j.applthermaleng.2014.04.006
[16] Cashell K A, Baddoo N R. Ferritic stainless steels in structural applications [J]. Thin. Wall. Struct., 2014, 83: 169
doi: 10.1016/j.tws.2014.03.014
[17] Jiang J W, Liu X, Shi Z H, et al. Research on properties of SA803TP439 heat exchange tubes for high pressure heater in nuclear power plant [J]. Found. Technol., 2014, 35: 147
(姜家旺, 刘熙, 施震灏 等. 核电厂高压加热器SA803TP439换热管的性能研究 [J]. 铸造技术, 2014, 35: 147)
[18] Ren Y F. Evaluation on TP439 welded tube for high-pressure feedwater heater of nuclear power stations [J]. Power Equip., 2013, 27: 37
(任一峰. 核电站高压加热器用TP439焊管的评估 [J]. 发电设备, 2013, 27: 37)
[19] Chen X M, Hu G H, Yang Y, et al. Application of TP439 welded pipe in high voltage heaters of domestic nuclear power plants [J]. Electr. Eng., 2016, (7): 63
(陈小萌, 胡光辉, 杨毅 等. TP439焊管在国内核电站高压加热器的应用 [J]. 电工技术, 2016, (7): 63)
[20] Huntz A M, Reckmann A, Haut C, et al. Oxidation of AISI 304 and AISI 439 stainless steels [J]. Mater. Sci. Eng., 2007, 447A: 266
[21] Pettersson C, Jonsson T, Proff C, et al. High temperature oxidation of the austenitic (35Fe27Cr31Ni) alloy sanicro 28 in O2+H2O environment [J]. Oxid. Met., 2010, 74: 93
doi: 10.1007/s11085-010-9199-1
[22] Young D J. High temperature oxidation and corrosion of metals [J]. Corros. Sci., 2008, 1: 3
[23] Tan F Y. Engineering Thermodynamics [M]. Beijing: Chemical Industry Press, 2010
(谭羽非. 工程热力学 [M]. 北京: 化学工业出版社, 2010)
[24] Liang Y J, Che Y C. Inorganic Thermodynamics Databook [M]. Shenyang: Northeastern University Press, 1993
(梁英教, 车荫昌. 无机物热力学数据手册 [M]. 沈阳: 东北大学出版社, 1993)
[25] Intiso L, Johansson L G, Canovic S, et al. Oxidation behaviour of sanicro 25 (42Fe22Cr25NiWCuNbN) in O2/H2O mixture at 600 ℃ [J]. Oxid. Met., 2012, 77: 209
doi: 10.1007/s11085-011-9281-3
[26] Zhang N Q, Yue G Q, Lv F B, et al. Crack growth rate of stress corrosion cracking of Inconel 625 in high temperature steam [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 9
(张乃强, 岳国强, 吕法彬 等. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究 [J]. 中国腐蚀与防护学报, 2017, 37: 9)
[27] Othman N K, Zhang J Q, Young D J. Temperature and water vapour effects on the cyclic oxidation behaviour of Fe-Cr alloys [J]. Corros. Sci., 2010, 52: 2827
doi: 10.1016/j.corsci.2010.04.026
[28] Sabioni A C S, Malheiros E A, Ji V, et al. Determination of oxygen diffusion coefficient in oxidation films of the AISI 439 ferritic stainless steel [J]. Def. Diffu. Forum., 2012, 323-325: 339
[29] Lobb R C, Evans H E. A determination of the chromium concentration for 'healing' layer formation during the oxidation of chromium-depleted 20cr-25ni-nb stainless steel [J]. Corros. Sci., 1984, 24: 385
doi: 10.1016/0010-938X(84)90065-9
[30] Yuan J T, Wang W, Zhang H H, et al. Investigation into the failure mechanism of chromia scale thermally grown on an austenitic stainless steel in pure steam [J]. Corros. Sci., 2016, 109: 36
doi: 10.1016/j.corsci.2016.03.021
[1] REN Yan, ZHANG Xintao, GAI Xin, XU Jingjun, ZHANG Wei, CHEN Yong, LI Meishuan. High Temperature Oxidation Behavior of Quaternary (Cr2/3Ti1/3)3AlC2 MAX Ceramic in Air and Steam[J]. 中国腐蚀与防护学报, 2023, 43(6): 1284-1292.
[2] HE Nankai, WANG Yongxin, ZHOU Shengguo, ZHOU Dapeng, LI Jinlong. Oxidation Behavior in Water Vapor and Tribological Property in Atmosphere with 60%Relative Humidity at 580 ℃ for Inconel 718 Alloy[J]. 中国腐蚀与防护学报, 2023, 43(2): 271-279.
[3] YANG Yifan, SUN Wenyao, CHEN Minghui, WANG Jinlong, WANG Fuhui. Oxidation Behavior of a Single Crystal Ni-based Superalloy N5 and Its Nanocrystalline Coating at 900 ℃ in O2 and O2+20%H2O Environment[J]. 中国腐蚀与防护学报, 2023, 43(1): 55-61.
[4] REN Yanjie, LV Yunlei, DAI Ting, GUO Xiaohui, CHEN Jian, ZHOU Libo, QIU Wei, NIU Yan. Oxidation Behavior of Ternary Alloys Co-20Ni-3Al and Co-20Ni-5Al in 105 Pa O2 Atmosphere at 800-1000 ℃[J]. 中国腐蚀与防护学报, 2022, 42(6): 995-1001.
[5] PEI Shubo, WAN Dongyang, ZHOU Ping, CAO Guoqin, HU Junhua. Research Progress on Preparation, Microstructure, Oxidation- and Corrosion-resistance of High-entropy Alloy Coatings[J]. 中国腐蚀与防护学报, 2022, 42(5): 873-878.
[6] ZHANG Qin, LIANG Taosha, WANG Wen, ZHAO Langlang, JIANG Yuefeng. Oxidation Kinetics and Microstructure Evolution of Nanocrystalline Ni-12Cr Alloy at 800 ℃[J]. 中国腐蚀与防护学报, 2022, 42(5): 733-742.
[7] XIE Leipeng, CHEN Minghui, WANG Jinlong, WANG Fuhui. High Temperature Oxidation Behavior of Ultrafine Grained ODS Nickel-based Superalloy Prepared by Spark Plasma Sintering[J]. 中国腐蚀与防护学报, 2022, 42(5): 709-716.
[8] LI Ling, DU Xiran, QU Pinquan, LI Jiancheng, WANG Jinlong, GU Yan, ZHANG Jia, CHEN Minghui, WANG Fuhui. Effect of Vacuum Heat Treatment on Oxidation Behavior of Arc Ion Plated NiCoCrAlY Coatings[J]. 中国腐蚀与防护学报, 2022, 42(2): 243-248.
[9] QIU Panpan, SHU Xiaoyong, HU Linli, YANG Tao, FANG Yuqing. Research Progress of Pt-modified Aluminide Coating on Nickel-base Superalloys[J]. 中国腐蚀与防护学报, 2022, 42(2): 186-192.
[10] YANG Sheng, ZHANG Huijie, XIANG Wuyuan, OUYANG Tao, XIAO Fen, ZHOU Hui. Effect of Post Surface Treatment of Micro-arc Oxidation Films/TC4 Ti-alloy on Their Morphology and Galvanic Corrosion Performance[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
[11] XIE Dongbai, HONG Hao, WANG Wen, PENG Xiao, DUO Shuwang. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[12] XU Xunhu,HE Cuiqun,XIANG Junhuai,WANG Ling,ZHANG Honghua,ZHENG Xiaodong. High Temperature Oxidation Behavior of Co-20Re-25Cr-1Si Alloy in 0.1 MPa Pure Oxygen[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[13] AI Peng,LIU Lixiang,LI Xiaogang,JIANG Wentao. Influence of TiAlSiN Coatings on High Temperature Oxidation Resistance of γ-TiAl Based Alloys[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[14] Junjie XIA,Hongzhi NIU,Min LIU,Huazhen CAO,Guoqu ZHENG,Liankui WU. Enhancement of High Temperature Oxidation Resistance of Ti48Al5Nb Alloy via Anodic Anodization in NH4F Containing Ethylene Glycol[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[15] Dongbai XIE,Youyu ZHOU,Jintao LU,Wen WANG,Shenglong ZHU,Fuhui WANG. Effect of Al/Si Content on Corrosion of Ni-based Alloys in Supercritical Water[J]. 中国腐蚀与防护学报, 2019, 39(1): 68-76.
No Suggested Reading articles found!