|
|
Corrosion Behavior of High Strength and High Electrical Conductivity Al-Mg-Si Alloy Wires with Large Area Reduction |
LI Fengming1,2, HOU Jiapeng2, XIE Guangzong3, WU Ximao4, WANG Qiang2( ), ZHANG Zhefeng2 |
1. Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China 2. Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3. North-East Branch of China Huaneng Group Co. Ltd., Shenyang 110167, China 4. Electric Power Research Institute of Liaoning Electric Power Co. Ltd., Shenyang 110006, China |
|
Cite this article:
LI Fengming, HOU Jiapeng, XIE Guangzong, WU Ximao, WANG Qiang, ZHANG Zhefeng. Corrosion Behavior of High Strength and High Electrical Conductivity Al-Mg-Si Alloy Wires with Large Area Reduction. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 1002-1008.
|
Abstract The corrosion behavior of high strength and high electrical conductivity Al-Mg-Si alloy wires used for long-distance overhead conductors was studied by means of immersion corrosion test and electrochemical tests. The results show that corrosion first started at the interface between Al-Fe-Si phase (or Si-rich phase) and α-matrix due to the micro-galvanic effect during the 20 d immersion corrosion in 3.5%NaCl solution. With the progress of corrosion process, Al-Fe-Si phase and Si-rich phase peeled off and corrosion pits formed. According to statistics, the sizes of Al-Fe-Si phase and Si-rich phase decrease gradually with the increasing area reduction of Al-Mg-Si alloy wire; accordingly, the extreme average depth of corrosion pits decreases gradually. This indicated that the size of Al-Fe-Si phase and Si-rich phase is the key factor dominating the pitting corrosion behavior of Al-Mg-Si alloy wire.
|
Received: 25 December 2021
|
|
Fund: National Natural Science Foundation of China(52001313);China Postdoctoral Science Foundation(2019M661151) |
About author: WANG Qiang, E-mail: gmwang@imr.ac.cn
|
[1] |
Mao Q C. Current situation and development of overhead transmission line manufacturing industry in China [J]. Electr. Power Technol., 2009, (2): 13
|
|
(毛庆传. 我国架空输电线制造业现状与发展 [J]. 电力技术, 2009, (2): 13)
|
[2] |
Liu B, Zheng Q, Dang P, et al. Development and applications of aluminum alloy in overhead lines [J]. Electr. Wire Cable, 2012, (4): 10
|
|
(刘斌, 郑秋, 党朋 等. 铝合金在架空导线领域的应用及发展 [J]. 电线电缆, 2012, (4): 10)
|
[3] |
Chen Q Q, Zhao Z H, Zhu Q F, et al. Effect of different annealing temperatures on hardness of 6201 aluminum alloy [J]. Trans. Mater. Heat Treat., 2016, 37(12): 24
|
|
(陈庆强, 赵志浩, 朱庆丰 等. 退火温度对6201铝合金硬度的影响 [J]. 材料热处理学报, 2016, 37(12): 24)
|
[4] |
Zheng H M, Hu X F, Cui J W, et al. Effect of Sc on microstructure and performance of Al-Mg-Si aerial cables [J]. Trans. Mater. Heat Treat., 2017, 38(9): 43
|
|
(郑红梅, 胡学飞, 崔接武 等. Sc元素对Al-Mg-Si架空导线的组织及性能影响 [J]. 材料热处理学报, 2017, 38(9): 43)
|
[5] |
Hou J P, Wang Q, Zhang Z J, et al. Nano-scale precipitates: the key to high strength and high conductivity in Al alloy wire [J]. Mater. Des., 2017, 132: 148
doi: 10.1016/j.matdes.2017.06.062
|
[6] |
Lu B, Zhao W B, Yin W K, et al. The conditions of overhead lines in east china power grid and the key factors affecting the life of conductors [J]. Electr. Wire Cable, 2018, (2): 5
|
|
(卢波, 赵文彬, 尹文阔 等. 华东电网架空线路状况及影响导线寿命的关键因素 [J]. 电线电缆, 2018, (2): 5)
|
[7] |
Li B, Meng X B, Wang G L, et al. Investigation and analysis on the corrosion of overhead conduction in the south coastal areas [J]. Electr. Wire Cable, 2018, (4): 6
|
|
(李斌, 孟晓波, 王国利 等. 南方沿海地区架空导线腐蚀情况调研分析 [J]. 电线电缆, 2018, (4): 6)
|
[8] |
Azevedo C R F, Cescon T. Failure analysis of aluminum cable steel reinforced (ACSR) conductor of the transmission line crossing the Paraná River [J]. Eng. Failure Anal., 2002, 9: 645
doi: 10.1016/S1350-6307(02)00021-3
|
[9] |
Li Z X, Chen Q Y, Hou J P, et al. Effect of drawing deformation on microstructure and strength of Al-Mg-Si alloy wire [J]. Trans. Mater. Heat Treat., 2021, 42: 75
|
|
(李周选, 陈庆吟, 侯嘉鹏 等. 拉拔变形量对Al-Mg-Si合金线微观组织和强度的影响 [J]. 材料热处理学报, 2021, 42: 75)
|
[10] |
Yue Z W, Li X G, Yan F J, et al. Corrosion analysis of overhead A CSR cable in coastal environment [J]. Electr. Wire Cable, 2015, (1): 36
|
|
(岳增武, 李辛庚, 闫风洁 等. 沿海地区架空钢芯铝绞线的腐蚀 [J]. 电线电缆, 2015, (1): 36)
|
[11] |
Zhou G, Lin D Y, Han J C, et al. Failure mechanism of 10 kV aerial insulation line of overhead distribution system in coastal and typhoon environment [J]. Corros. Sci. Prot. Technol., 2019, 31: 643
|
|
(周刚, 林德源, 韩纪层 等. 沿海及强台风环境下10 kV配网架空绝缘导线的失效机理分析 [J]. 腐蚀科学与防护技术, 2019, 31: 643)
|
[12] |
Zhang X, Zhao J F, Li Y W, et al. Corrosion mechanism of wires used for transmission and transformation project [J]. Corros. Prot., 2017, 38: 403
|
|
(张旭, 赵景峰, 李轶文 等. 输变电用导线的腐蚀机理 [J]. 腐蚀与防护, 2017, 38: 403)
|
[13] |
Kreislova K, Jaglova M, Turek L, et al. Evaluation of corrosion of long-term exposed aluminum conductor [J]. Koroze Ochr. Mater., 2013, 57(1): 25
|
[14] |
Li C X, Li J F, Birbilis N, et al. Synergetic effect of Mg2Si and Si particles on intergranular corrosion of Al-Mg-Si alloys through multi-electrode coupling system [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 107
|
|
(李朝兴, 李劲风, Birbilis N 等. Mg2Si及Si粒子在Al-Mg-Si合金晶间腐蚀中协同作用机理的多电极偶合研究 [J]. 中国腐蚀与防护学报, 2010, 30: 107)
|
[15] |
Zheng Q J, Wu J, Jiang H X, et al. Effect of micro-alloying element La on corrosion behavior of Al-Mg-Si alloys [J]. Corros. Sci., 2021, 179: 109113
doi: 10.1016/j.corsci.2020.109113
|
[16] |
Zhang J X, Shao S J, Gao A H. Effect of Mg/Si mass ratio on microstructure and properties of Al-Mg-Si aluminum alloy [J]. Light Met., 2012, (9): 56
|
|
(张建新, 邵水军, 高爱华. Mg/Si质量比对Al-Mg-Si系合金组织性能的影响 [J]. 轻金属, 2012, (9): 56)
|
[17] |
Zander D, Schnatterer C, Altenbach C, et al. Microstructural impact on intergranular corrosion and the mechanical properties of industrial drawn 6056 aluminum wires [J]. Mater. Des., 2015, 83: 49
doi: 10.1016/j.matdes.2015.05.079
|
[18] |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 18590-2001 Corrosion of metals and alloys—Evaluation of pitting corrosion[S]. Beijing: Standards Press of China, 2004
|
|
(中华人民共和国国家质量监督检验检疫总局. GB/T 18590-2001 金属和合金的腐蚀 点蚀评定方法[S]. 北京: 中国标准出版社, 2004)
|
[19] |
Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijing: Chemical Industry Press, 2008: 36
|
|
(曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008: 36)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|