Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (6): 1002-1008    DOI: 10.11902/1005.4537.2021.362
Current Issue | Archive | Adv Search |
Corrosion Behavior of High Strength and High Electrical Conductivity Al-Mg-Si Alloy Wires with Large Area Reduction
LI Fengming1,2, HOU Jiapeng2, XIE Guangzong3, WU Ximao4, WANG Qiang2(), ZHANG Zhefeng2
1. Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
2. Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. North-East Branch of China Huaneng Group Co. Ltd., Shenyang 110167, China
4. Electric Power Research Institute of Liaoning Electric Power Co. Ltd., Shenyang 110006, China
Cite this article: 

LI Fengming, HOU Jiapeng, XIE Guangzong, WU Ximao, WANG Qiang, ZHANG Zhefeng. Corrosion Behavior of High Strength and High Electrical Conductivity Al-Mg-Si Alloy Wires with Large Area Reduction. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 1002-1008.

Download:  HTML  PDF(6242KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of high strength and high electrical conductivity Al-Mg-Si alloy wires used for long-distance overhead conductors was studied by means of immersion corrosion test and electrochemical tests. The results show that corrosion first started at the interface between Al-Fe-Si phase (or Si-rich phase) and α-matrix due to the micro-galvanic effect during the 20 d immersion corrosion in 3.5%NaCl solution. With the progress of corrosion process, Al-Fe-Si phase and Si-rich phase peeled off and corrosion pits formed. According to statistics, the sizes of Al-Fe-Si phase and Si-rich phase decrease gradually with the increasing area reduction of Al-Mg-Si alloy wire; accordingly, the extreme average depth of corrosion pits decreases gradually. This indicated that the size of Al-Fe-Si phase and Si-rich phase is the key factor dominating the pitting corrosion behavior of Al-Mg-Si alloy wire.

Key words:  overhead conductor      high-strength-high electrical conductivity alloy wire      corrosion      crystalline phase      area reduction     
Received:  25 December 2021     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(52001313);China Postdoctoral Science Foundation(2019M661151)
About author:  WANG Qiang, E-mail: gmwang@imr.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.362     OR     https://www.jcscp.org/EN/Y2022/V42/I6/1002

Pass nDiameter / mmArea reduction / %
08.120
16.06544.2
25.4355.3
34.27572.3
43.1884.7
Table 1  Diameter and area reduction of Al-Mg-Si alloy wires samples
Fig.1  Dynamic potential polarization curves of Al-Mg-Si alloy wires with area reduction of 55.3% and 84.7%, respectively
Area reduction / %EcorrV vs SCEIcorrA·cm-2RpkΩ·cm2Vcorrmm·a-1EpV vs SCE
55.3-0.865.71×10-5345.320.95-0.29
84.7-0.834.27×10-65415.380.07-0.23
Table 2  Parameters extrated from the dynamic potential polarization curves of Al-Mg-Si alloy wires with 55.3% and 84.7% area reduction, respectively
Fig.2  Surface corrosion morphologies (a-c) and EDS analysis (d-f) of Al-Mg-Si alloy wire with 55.3% (a, d), 72.3% (b, e) and 84.7% (c, f) area reduction
Fig.3  Cross-sectional morphologies of corrosion pits on Al-Mg-Si alloy wire with 55.3% (a),72.3% (b) and 84.7% (c) area reduction
Fig.4  Extreme average depth of corrosion pits on Al-Mg-Si alloy wires with large area reductions
Fig.5  Microstructure characterization of Al-Mg-Si alloy wires with 55.3% (a, c) and 84.7% (b, d) area reduction by EBSD
Fig.6  Secondary electron images (a-c) and EDS analysis (d-f) of the blocky phase in Al-Mg-Si alloy wires with 55.3% (a, d), 72.3% (b, e) and 84.7% (c, f) area reduction
Fig.7  Evolution of the blocky phase size in Al-Mg-Si alloy wires with large area reductions (a) and the relationship between the crystalline phase size and the EDCP (b)
Fig.8  EDS analysis of corrosion products in the corrosion pit, surface morphology (a) of surface scanning and elemental distribution of Al (b) and Cl (c)
Fig.9  Schematic diagrams of the mechanism on the emergence and growth of pitting corrosion on Al-Mg-Si alloy wires: (a) emergence of corrosion pit; (b) growth of corrosion pit
[1] Mao Q C. Current situation and development of overhead transmission line manufacturing industry in China [J]. Electr. Power Technol., 2009, (2): 13
(毛庆传. 我国架空输电线制造业现状与发展 [J]. 电力技术, 2009, (2): 13)
[2] Liu B, Zheng Q, Dang P, et al. Development and applications of aluminum alloy in overhead lines [J]. Electr. Wire Cable, 2012, (4): 10
(刘斌, 郑秋, 党朋 等. 铝合金在架空导线领域的应用及发展 [J]. 电线电缆, 2012, (4): 10)
[3] Chen Q Q, Zhao Z H, Zhu Q F, et al. Effect of different annealing temperatures on hardness of 6201 aluminum alloy [J]. Trans. Mater. Heat Treat., 2016, 37(12): 24
(陈庆强, 赵志浩, 朱庆丰 等. 退火温度对6201铝合金硬度的影响 [J]. 材料热处理学报, 2016, 37(12): 24)
[4] Zheng H M, Hu X F, Cui J W, et al. Effect of Sc on microstructure and performance of Al-Mg-Si aerial cables [J]. Trans. Mater. Heat Treat., 2017, 38(9): 43
(郑红梅, 胡学飞, 崔接武 等. Sc元素对Al-Mg-Si架空导线的组织及性能影响 [J]. 材料热处理学报, 2017, 38(9): 43)
[5] Hou J P, Wang Q, Zhang Z J, et al. Nano-scale precipitates: the key to high strength and high conductivity in Al alloy wire [J]. Mater. Des., 2017, 132: 148
doi: 10.1016/j.matdes.2017.06.062
[6] Lu B, Zhao W B, Yin W K, et al. The conditions of overhead lines in east china power grid and the key factors affecting the life of conductors [J]. Electr. Wire Cable, 2018, (2): 5
(卢波, 赵文彬, 尹文阔 等. 华东电网架空线路状况及影响导线寿命的关键因素 [J]. 电线电缆, 2018, (2): 5)
[7] Li B, Meng X B, Wang G L, et al. Investigation and analysis on the corrosion of overhead conduction in the south coastal areas [J]. Electr. Wire Cable, 2018, (4): 6
(李斌, 孟晓波, 王国利 等. 南方沿海地区架空导线腐蚀情况调研分析 [J]. 电线电缆, 2018, (4): 6)
[8] Azevedo C R F, Cescon T. Failure analysis of aluminum cable steel reinforced (ACSR) conductor of the transmission line crossing the Paraná River [J]. Eng. Failure Anal., 2002, 9: 645
doi: 10.1016/S1350-6307(02)00021-3
[9] Li Z X, Chen Q Y, Hou J P, et al. Effect of drawing deformation on microstructure and strength of Al-Mg-Si alloy wire [J]. Trans. Mater. Heat Treat., 2021, 42: 75
(李周选, 陈庆吟, 侯嘉鹏 等. 拉拔变形量对Al-Mg-Si合金线微观组织和强度的影响 [J]. 材料热处理学报, 2021, 42: 75)
[10] Yue Z W, Li X G, Yan F J, et al. Corrosion analysis of overhead A CSR cable in coastal environment [J]. Electr. Wire Cable, 2015, (1): 36
(岳增武, 李辛庚, 闫风洁 等. 沿海地区架空钢芯铝绞线的腐蚀 [J]. 电线电缆, 2015, (1): 36)
[11] Zhou G, Lin D Y, Han J C, et al. Failure mechanism of 10 kV aerial insulation line of overhead distribution system in coastal and typhoon environment [J]. Corros. Sci. Prot. Technol., 2019, 31: 643
(周刚, 林德源, 韩纪层 等. 沿海及强台风环境下10 kV配网架空绝缘导线的失效机理分析 [J]. 腐蚀科学与防护技术, 2019, 31: 643)
[12] Zhang X, Zhao J F, Li Y W, et al. Corrosion mechanism of wires used for transmission and transformation project [J]. Corros. Prot., 2017, 38: 403
(张旭, 赵景峰, 李轶文 等. 输变电用导线的腐蚀机理 [J]. 腐蚀与防护, 2017, 38: 403)
[13] Kreislova K, Jaglova M, Turek L, et al. Evaluation of corrosion of long-term exposed aluminum conductor [J]. Koroze Ochr. Mater., 2013, 57(1): 25
[14] Li C X, Li J F, Birbilis N, et al. Synergetic effect of Mg2Si and Si particles on intergranular corrosion of Al-Mg-Si alloys through multi-electrode coupling system [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 107
(李朝兴, 李劲风, Birbilis N 等. Mg2Si及Si粒子在Al-Mg-Si合金晶间腐蚀中协同作用机理的多电极偶合研究 [J]. 中国腐蚀与防护学报, 2010, 30: 107)
[15] Zheng Q J, Wu J, Jiang H X, et al. Effect of micro-alloying element La on corrosion behavior of Al-Mg-Si alloys [J]. Corros. Sci., 2021, 179: 109113
doi: 10.1016/j.corsci.2020.109113
[16] Zhang J X, Shao S J, Gao A H. Effect of Mg/Si mass ratio on microstructure and properties of Al-Mg-Si aluminum alloy [J]. Light Met., 2012, (9): 56
(张建新, 邵水军, 高爱华. Mg/Si质量比对Al-Mg-Si系合金组织性能的影响 [J]. 轻金属, 2012, (9): 56)
[17] Zander D, Schnatterer C, Altenbach C, et al. Microstructural impact on intergranular corrosion and the mechanical properties of industrial drawn 6056 aluminum wires [J]. Mater. Des., 2015, 83: 49
doi: 10.1016/j.matdes.2015.05.079
[18] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 18590-2001 Corrosion of metals and alloys—Evaluation of pitting corrosion[S]. Beijing: Standards Press of China, 2004
(中华人民共和国国家质量监督检验检疫总局. GB/T 18590-2001 金属和合金的腐蚀 点蚀评定方法[S]. 北京: 中国标准出版社, 2004)
[19] Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijing: Chemical Industry Press, 2008: 36
(曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008: 36)
[1] LIU Guoqiang, ZHANG Dongfang, CHEN Haoxiang, FAN Zhihong, XIONG Jianbo, WU Qingfa. Electrochemical Corrosion Behavior of 2304 Duplex Stainless Steel in a Simulated Pore Solution in Reinforced Concrete Serving in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 204-212.
[2] XIONG Yiming, MEI Wan, WANG Zehua, YU Rui, XU Shiyao, WU Lei, ZHANG Xin. Corrosion Behavior of 5083 Al-alloy under Magnetic Field[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[3] YUAN Yu, XIANG Yong, LI Chen, ZHAO Xuehui, YAN Wei, YAO Erdong. Research Progress on Corrosion of CO2 Injection Well Tubing in CCUS System[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
[4] SONG Dongdong, WAN Hongxia, XU Dong, ZHOU Qian. Influence of Rolling on Corrosion Behavior of ZM5 Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
[5] ZHAO Guoxian, LIU Ranran, DING Langyong, ZHANG Siqi, GUO Menglong, WANG Yingchao. Effect of Temperature on CO2-inducedCorrosion Behavior of 5Cr Steel in a Simulated Oilfield Produced High-temperature and High-pressured Water[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[6] LIU Jingyuan, ZANG Qing'an, SUN Changjun, ZHANG Cuiqing, LI Xiaofeng. Research Progress on Corrosion and Protection of Water System for Coal Gasification[J]. 中国腐蚀与防护学报, 2024, 44(1): 27-37.
[7] XIE Yun, LIU Ting, WANG Wen, ZHOU Jialin, TANG Song. Effect of Microstructure on Corrosion Resistance of a High-strength Ultralightweight Mg-Li Alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
[8] WANG Jingyu, ZHOU Xuejie, WANG Honglun, WU Jun, CHEN Hao, ZHENG Penghua. Initial Corrosion Behavior of Carbon Steel and High Strength Steel in South China Sea Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 237-245.
[9] MA Yan, LAN Yuning, CHEN Jiawei. A Novel Cross-sectional Metallography Method for Determining Hydrogen Absorption Concentration and Hydrogen Absorption Amount of Zr-Sn-Nb Alloy Cladding Caused by High Temperature Water Corrosion[J]. 中国腐蚀与防护学报, 2024, 44(1): 261-266.
[10] BIAN Yafei, TANG Wenming, ZHANG Jie, MAO Ruirui, MIAO Chunhui, CHEN Guohong. Soil Corrosion Characteristics of Q235 Steel Grounding Material Used in Power Grid in Anhui Province[J]. 中国腐蚀与防护学报, 2024, 44(1): 130-140.
[11] BAI Xuehan, DING Kangkang, ZHANG Penghui, FAN Lin, ZHANG Huixia, LIU Shaotong. Accelerated Corrosion Test of AH36 Ship Hull Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 187-196.
[12] SUN Shuo, DAI Jiaming, SONG Yingwei, AI Caijiao. Corrosion Behavior of Extruded EW75 Mg-alloy in Shenyang Industrial Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[13] JIANG Guangrui, LIU Guanghui, SHANG Ting. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of ZnAlMg Coating[J]. 中国腐蚀与防护学报, 2024, 44(1): 246-254.
[14] LENG Wenjun, SHI Xizhao, XIN Yonglei, YANG Yange, WANG Li, CUI Zhongyu, HOU Jian. Correlation of Corrosion Information Aquired by Indoor Acceleration Testing and by Real Low Temperature Marine Atmosphere Exposure in Polar Region for Ni-Cr-Mo-V Steel[J]. 中国腐蚀与防护学报, 2024, 44(1): 91-99.
[15] WANG Pengjie, SONG Yuhao, FAN Lin, DENG Kuanhai, LI Zhonghui, MEI Zongbin, GUO Lei, LIN Yuanhua. Inhibition of Q235 Steel in 1 mol/L HCl Solution by a New Efficient Imidazolium Schiff Base Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2024, 44(1): 59-70.
No Suggested Reading articles found!