Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (1): 202-208    DOI: 10.11902/1005.4537.2021.357
Current Issue | Archive | Adv Search |
AC Corrosion Behavior of Several Metallic Materials as Candidate for Boiler Electrode
ZHENG Zhong1, ZHOU Yuanxiang1,2(), LI Yongyin1
1.Wind Solar Storage Division of State Key Laboratory of Power System and Generation Equipment, School of Electrical Engineering, Xinjiang University, Urumqi 830047, China
2.State Key Laboratory of Control and Simulation of Power Systems and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
Download:  HTML  PDF(7089KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Corrosion resistance of electrode materials is an important factor affecting energy consumption and service life of electrode boiler. In this paper, the corrosion resistance of titanium, 304 stainless steel and 20# steel as candidate electrode materials was assessed by controlling the applied current density to simulate the working condition of electrode boiler. The corrosion rate, polarization potential and conductivity of the three electrode materials were measured before and after corrosion in different concentrations of trisodium phosphate solution by different applied voltages. The results show that the corrosion current density of 20# steel is about 4 and 20 times higher than that of 304 stainless steel and titanium respectively. Loose corrosion products are generated on the surface of 20# steel electrode, and thus its corrosion resistance is the worst. Results of comparative tests show that titanium electrode has the best corrosion resistance, but its price is high; 304 stainless steel cannot completely be passivated by 500 A/m2 AC interference, thereby pitting corrosion occurs on its surface. By taking comprehensively the corrosion resistance, conductivity and economy into consideration, stainless steel may be the suitable candidate as electrode material in the case of long boiler life expectancy.

Key words:  electrode boiler      AC corrosion      high voltage electrode      trisodium phosphate solution      passive film     
Received:  16 December 2021      32134.14.1005.4537.2021.357
ZTFLH:  TG174  

Cite this article: 

ZHENG Zhong, ZHOU Yuanxiang, LI Yongyin. AC Corrosion Behavior of Several Metallic Materials as Candidate for Boiler Electrode. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 202-208.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.357     OR     https://www.jcscp.org/EN/Y2023/V43/I1/202

Fig.1  Electrode corrosion system
Fig.2  Electrochemical measuring apparatus (a) electrode corrosion potential measurement circuit, (b) polarization curve measurement circuit
Fig.3  Macro morphologies after corrosion of titanium electrodes (a), 304 stainless steel electrodes (b) and 20# steel electrodes (c)
Fig.4  Macro morphology after rust removal of 20# steel electrodes
Fig.5  Corrosion rate of electrodes with different corrosion duration of titanium electrode, 304 stainless steel electrode and 20# steel electrode
Fig.6  Current of each electrode at 100 ℃, 0.003 mol/L trisodium phosphate solution
Fig.7  Temperature current fitting of corroded 360 h electrode of titanium electrode, 304 stainless steel electrode and 20# steel electrode
Fig.8  Corrosion rate of titanium electrode (a), 304 stainless steel electrode (b) and 20# steel electrode (c) under different voltages and concentrations
Fig.9  SEM images of titanium electrode (a, b), 304 stainless steel electrode (c, d) and 20# steel electrode (e, f)
Fig.10  Electrode potential under 500 A/m2 AC interference of titanium electrode (a), 304 stainless steel electrode (b) and (c) 20# steel electrode
Fig.11  Polarization curves under 500 A/m2 AC interference of titanium electrode (a), 304 stainless steel electrode (b) and (c) 20# steel electrode
ElectrodeEcorr / Vba / V·dec-1bc / V·dec-1Icorr / A·cm-2
Titanium7.5390.12573-0.12032.1×10-5
304 stainless steel-0.1050.15521-0.339221.1×10-4
20# steel-0.4350.19437-0.338734.2×10-4
Table 1  Polarization curve fitting data of titanium electrode 304 stainless steel electrode and 20# steel electrode
1 Kang C Q, Chen H, Zhao Y M, et al. High performance distributed electro-thermic energy system centered on the high voltage electrode electric boiler [J]. Southern Power Syst. Technol., 2017, 11(10): 35
康重庆, 陈辉, 赵宇明 等. 以高压电极式电锅炉为核心的高性能分布式电热能源系统 [J]. 南方电网技术, 2017, 11(10): 35
2 Guo F, Xia Q Y, Liu Y. Theory and application of immersion-type electrode boiler [J]. Energy Res. Manag., 2012, (2): 65
郭锋, 夏青扬, 刘杨. 浸没式电极锅炉原理及应用 [J]. 能源研究与管理, 2012, (2): 65
3 Chen W B, Dai G P, Chen C, et al. Review on the development of high voltage electrode boiler technology [J]. Technol. Econom. Guide, 2019, (3): 65
陈卫波, 戴刚平, 陈超 等. 高压电极锅炉技术研究发展综述 [J]. 科技经济导刊, 2019, (3): 65
4 Wu B C, Wu H Y. Research on the method of steam-water reverse power control of immerged electrode boiler for nuclear power plants [J]. Electr. Power, 2017, 50(2): 107
吴炳晨, 吴航宇. 核电电极浸入式锅炉汽水参数反向控制电功率方法 [J]. 中国电力, 2017, 50(2): 107
5 Yuan X F. Study on mechanism modeling and dynamic characteristics of submerged electrode boiler system [D]. Baoding: North China Electric Power University, 2019
袁雪峰. 电极浸入式锅炉系统机理建模及动态特性研究 [D]. 保定: 华北电力大学, 2019
6 Yuan X F, Ma J, Qiang S. Study on decoupling of power and steam temperature control system of electrode boiler [J]. Comput. Simulat., 2019, 36(9): 136
袁雪峰, 马进, 强硕. 电极式锅炉功率与蒸汽温度控制系统解耦研究 [J]. 计算机仿真, 2019, 36(9): 136
7 Ma J, Qiang S, Yuan X F. Research on mathematical modeling of electrode boiler based on dynamic neural network [J]. Comput. Simulat., 2019, 36(9): 126
马进, 强硕, 袁雪峰. 基于动态神经网络的电极式锅炉数学建模研究 [J]. 计算机仿真, 2019, 36(9): 126
8 Liu Y F. A kind of low voltage unscaled carbon fiber electrode boiler [P]. Chin Pat, 202023228499.1, 2021
刘永锋. 一种低压无垢碳纤维电极锅炉 [P]. 中国专利, 202023228499.1, 2021)
9 Zhang J, Geng H L. Long life electrode boiler electrode rod and its preparation method [P]. Chin Pat, 202010162746.8, 2020
张杰, 耿华龙. 长寿命电极锅炉电极棒及其制备方法 [P]. 中国专利, 202010162746.8, 2020)
10 Guo Y S, Zhao D G. Electrode rod for electrode boiler [P]. Chin Pat, 201921114576.5, 2020
郭永生, 赵殿国. 电极锅炉用电极棒 [P]. 中国专利, 20192111-4576.5, 2020)
11 Zhan W X, Xie L, Wang Y, et al. Rod electrode device for electrode boiler [P]. Chin Pat, 2020204052580, 2020
战卫星, 谢玲, 王勇 等. 电极锅炉用棒式电极装置 [P]. 中国专利, 2020204052580, 2020)
12 Zhan W X, Liu D Q, Cao J, et al. Parallel plate electrode device for electrode boiler [P]. Chin Pat, 202020405281.X, 2020
战卫星, 刘德强, 曹洁 等. 电极锅炉用平行板式电极装置 [P]. 中国专利, 202020405281.X, 2020)
13 Wang Y, Zhan W X, Fu J S. Symmetrical plate electrode device for electrode boiler [P]. Chin Pat, 202020404645.2, 2020
王勇, 战卫星, 傅吉收. 电极锅炉用对称板式电极装置 [P]. 中国专利, 202020404645.2, 2020)
14 Chen W B, Chen Z G, Zhang D C, et al. Experimental study on durability of electrode materials for high voltage electrode boilers [J]. Shandong Ind. Technol., 2019, (4): 6
陈卫波, 陈志高, 张大长 等. 高压电极锅炉电极材料耐久性试验研究 [J]. 山东工业技术, 2019, (4): 6
15 Wan H X, Song D D, Liu Z Y, et al. Effect of alternating current on corrosion behavior of X80 pipeline steel in near-neutral environment [J]. Acta Metall. Sin., 2017, 53: 575
万红霞, 宋东东, 刘智勇 等. 交流电对X80钢在近中性环境中腐蚀行为的影响 [J]. 金属学报, 2017, 53: 575
16 Zhu M, Du C W, Li X G, et al. Effects of alternating current (AC) frequency on corrosion behavior of X80 pipeline steel in a simulated acid soil solution [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 225
朱敏, 杜翠薇, 李晓刚 等. 交流电频率对X80管线钢在酸性土壤模拟溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2014, 34: 225
17 Wang X H, Yang G Y, Huang H, et al. AC stray current corrosion law of buried steel pipeline [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 293
王新华, 杨国勇, 黄海 等. 埋地钢质管道交流杂散电流腐蚀规律研究 [J]. 中国腐蚀与防护学报, 2013, 33: 293
18 Zhu M, Liu Z Y, Du C W, et al. Effects of alternating current on corrosion behavior of X80 pipeline steel in acid soil environment [J]. J. Mater. Eng., 2015, 43(2): 85
朱敏, 刘智勇, 杜翠薇 等. 交流电对X80钢在酸性土壤环境中腐蚀行为的影响 [J]. 材料工程, 2015, 43(2): 85
19 Zhang Y X, Du Y X, Lu M X. Corrosion behavior of buried pipeline under dynamic DC stray current interference [J]. Corros. Prot., 2013, 34: 771
张玉星, 杜艳霞, 路民旭. 动态直流杂散电流干扰下埋地管道的腐蚀行为 [J]. 腐蚀与防护, 2013, 34: 771
20 Liang Y, Du Y X. Research progress on evaluation criteria and mechanism of corrosion under cathodic protection and AC interference [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 215
梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展 [J]. 中国腐蚀与防护学报, 2020, 40: 215
21 Liu C P, Cui Z Y. Electrode boiler for improving electrode corrosion and electrode boiler system including electrode boiler [P]. Korea Pat: 201921740602.5, 2020
柳成培, 崔宰源. 改善电极腐蚀的电极锅炉及包括电极锅炉的电极锅炉系统 [P]. 韩国专利: 201921740602.5, 2020)
22 Jin G Y. Surface area expansion electrode rod for electrode boiler and its manufacturing method [P]. Korea Pat: 202010935493.3, 2021
金庚昱. 用于电极锅炉的表面积扩张型电极棒及其制造方法 [P]. 韩国专利: 202010935493.3, 2021)
[1] LI Wenju, ZHANG Huixia, ZHANG Hongquan, HAO Fuyao, TONG Hongtao. Effect of Temperature on Stress Corrosion Behavior of Ti-alloy Ti80 in Sea Water[J]. 中国腐蚀与防护学报, 2023, 43(1): 111-118.
[2] ZHANG Yuan, ZHANG Xian, CHEN Siyu, LI Teng, LIU Jing, WU Kaiming. Effect of Phosphoric Acid Concentration on Corrosion Resistance and Passivation Film Properties of 316L Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(5): 819-825.
[3] ZHAO Baozhu, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Comparison of Corrosion Resistance of CoCrFeMnNi High Entropy Alloys with Pipeline Steels in an Artificial Alkaline Soil Solution[J]. 中国腐蚀与防护学报, 2022, 42(3): 425-434.
[4] DENG Jiali, YAN Maocheng, GAO Bowen, ZHANG Hui. Corrosion Behavior of Pipeline Steel Under High-speed Railway Dynamic AC Interference[J]. 中国腐蚀与防护学报, 2022, 42(1): 127-134.
[5] ZHANG Longhua, LI Changjun, PAN Lei, HAN Sike, WANG Xin, CUI Zhongyu. Corrosion Behavior of 316L Stainless Steel in Simulated Oilfield Wastewater[J]. 中国腐蚀与防护学报, 2021, 41(5): 625-632.
[6] GONG Ke, WU Ming, ZHANG Sheng. Effect of HCO3- on Stress Corrosion Cracking Behavior of X90 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 727-731.
[7] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[8] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[9] ZHANG Rui,LI Yu,GUAN Lei,WANG Guan,WANG Fuyu. Effect of Heat Treatment on Electrochemical Corrosion Behavior of Selective Laser Melted Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[10] Shaokun YAN,Dajiang ZHENG,Jiang WEI,Guangling SONG,Lian ZHOU. Electrochemical Activation of Passivated Pure Titanium in Artificial Seawater[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[11] Dong LIU,Hongliang XIANG,Chunyu LIU. XPS Analysis of Corrosion Product Scale on Surface of Silver-bearing Antibacterial Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[12] Ming LIU,Xuequn CHENG,Xiaogang LI,Tianjian LU. Corrosion Resistance Mechanisms of Passive Films Formed on Low Alloy Rebar Steels in Liquor of Cement Extract[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[13] Zihan LIAO, Bo SONG, Ze REN, Chuan HE, Xu CHEN. Electrochemical Corrosion Behavior of Matrix and Weld Seam of X70 Steel in Na2CO3+NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[14] Guangyu LI, Mingkai LEI. Composition and Semi-conductive Characteristic of Passive Film Formed on γΝ-phase in a Borax Buffer Solution[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.
[15] Tianyi ZHANG,Junsheng WU,Hailong GUO,Xiaogang LI. Influence of HSO3- on Passive Film Composition and Corrosion Resistance of 2205 Duplex Stainless Steelin Simulated Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.
No Suggested Reading articles found!