Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (6): 535-542    DOI: 10.11902/1005.4537.2016.190
Orginal Article Current Issue | Archive | Adv Search |
Influence of HSO3- on Passive Film Composition and Corrosion Resistance of 2205 Duplex Stainless Steelin Simulated Seawater
Tianyi ZHANG,Junsheng WU(),Hailong GUO,Xiaogang LI
Corrosion and Protection Center, Institute of Advanced Materials, University of Science and Technology Beijing, Beijing 100083, China
Download:  HTML  PDF(802KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Corrosion behavior of 2205 duplex stainless steel in simulated seawater containing different concentration of NaHSO3 has been systemically investigated by means of potentiodynamic polarization and electrochemical impedance spectrum (EIS) measurements. While the defects and the compositions of the formed passive films on the steel were characterized by Mott-Schottky and XPS respectively. The results demonstrate that the existence of HSO3- in the simulated seawater contributes to the increase of metal oxide content in the passive film formed on 2205 stainless steel. In the simulated seawater containing 0.01 mol/L HSO3-, 2205 duplex stainless steel presents the worst corrosion resistant performance, correspondingly the calculated defect concentration for the formed passive film is consistent to the electrochemical test results. The oxidation of HSO3- induces the formation of HSO4- in aqueous solution, which will give rise to the releasing of hydrogen ions, leading to the increase of acidity of the solution and thus induces the damage of the passive film on 2205 stainless steel. However, when the concentration of HSO3- in simulated seawater is less than 0.01 mol/L, the corrosion resistance of the steel will rise again. This is because the competitive adsorption between HSO3- and Cl- on the 2205 stainless steel surface can inhibit the adsorption of Cl-, which then results in the decline of the pitting corrosion probability.

Key words:  2205 duplex stainless steel      passive film      defect      simulated seawater      competitiveadsorption     

Cite this article: 

Tianyi ZHANG,Junsheng WU,Hailong GUO,Xiaogang LI. Influence of HSO3- on Passive Film Composition and Corrosion Resistance of 2205 Duplex Stainless Steelin Simulated Seawater. Journal of Chinese Society for Corrosion and protection, 2016, 36(6): 535-542.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.190     OR     https://www.jcscp.org/EN/Y2016/V36/I6/535

Fig.1  Dynamic potential polarization curves (a) of 2205 stainless steel in simulated seawater solutions and the relationship between NaHSO3 concentration and pitting corrosion potential of 2205 stainless steel (b)
Fig.2  Nyquist diagram (a) and Bode diagram (b) of 2025 stainless steel in simulated seawater solutions with different concentrations of HSO3-, and corresponding equivalent circuit (c)
Concentration of NaHSO3 / molL-1 Rs / Ω CPEdl / F ndl Rct / Ω CPEfilm / F nfilm Rfilm / Ω
0 5.805 5.06×10-5 0.8924 2.34×105 1.68×10-5 0.7992 2.20×105
0.005 5.597 5.97×10-5 0.8798 3.05×104 2.10×10-3 1 3.77×104
0.01 6.235 6.19×10-5 0.8587 2.50×104 3.36×10-3 1 1.82×104
0.05 6.106 6.34×10-5 0.8976 6.20×104 1.90×10-3 0.8670 2.23×104
0.1 5.456 5.83×10-5 0.8608 9.70×104 8.47×10-4 1 6.14×104
Table 2  Fitting results of impedance spectra of 2205 duplex stainless steel in simulated seawaters with differentconcentrations of HSO3-
Fig.3  Relationship between Rfilm and NaHSO3concentration
Fig.4  Mott-Schottky curves of 2205 duplex stainless steel in simulated seawater solutions with different concentrations of HSO3- (a) and variation of Nd in formed passivation films with NaHSO3 concentration (b)
Concentration of NaHSO3 / molL-1 Fit-slope Nd / cm-3
0 5.83×109 1.55×1021
0.0050 3.84×109 2.36×1021
0.010 2.35×109 3.84×1021
0.050 4.26×109 2.13×1021
0.10 5.71×109 1.59×1021
Table 3  Calculation results of Mott-schottky curve
Fig.5  XPS spectua of full (a), Cr (b), Fe (c) and S (d) for the passive film of 2025 stainless steel in simulated seawatersolution with 0.01 mol/L HSO3-
Concentration of HSO3- / molL-1 Cr Cr2O3 Cr(OH)3 CrO3
0 0.384 0.272 0.179 0.164
0.005 0.174 0.307 0.333 0.186
0.01 0.139 0.310 0.327 0.224
0.05 0.157 0.300 0.344 0.200
0.1 0.161 0.312 0.309 0.218
Table 4  Contents of Cr with different valence states in passivation films formed in simulated seawatersolutions with different concentrations of HSO3- (mass fraction / %)
Concentration of HSO3- / molL-1 Fe Fe3O4 FeO Fe2O3 FeOOH
0 0.531 0.228 0.039 0.083 0.119
0.005 0.302 0.303 0.180 0.097 0.117
0.01 0.304 0.296 0.185 0.101 0.113
0.05 0.347 0.345 0.108 0.095 0.105
0.1 0.286 0.292 0.185 0.089 0.148
Table 5  Contents of Fe with different valence states in passivation films formed in simulated seawatersolutions with different concentrations of HSO3- (mass fraction / %)
[1] Luo H, Dong C F, Cheng X Q, et al.Electrochemical behavior of 2205 duplex stainless steel in NaCl solution with different chromate contents[J]. J. Mater. Eng. Perform., 2012, 21(7): 1283
[2] Gong M, Zou Z, Zheng X W, et al.Corrosion behavior of 2205 duplex stainless steel in bittern[J]. Corros. Prot., 2009, 30(7): 473
[2] (龚敏, 邹振, 郑兴文等. 2205双相不锈钢在卤水环境中的腐蚀行为[J]. 腐蚀与防护, 2009, 30(7): 473)
[3] Ebrahimi N, Moayed M H, Davoodi A.Critical pitting temperature dependence of 2205 duplex stainless steel on dichromate ion concentration in chloride medium[J]. Corros. Sci., 2011, 53(4): 1278
[4] Tsai W T, Chen M S.Stress corrosion cracking behavior of 2205 duplex stainless steel in concentrated NaCl solution[J]. Corros. Sci., 2000, 42(3): 545
[5] Nicic I, Macdonald D D.The passivity of Type 316L stainless steel in borate buffer solution[J]. J. Nucl. Mater., 2008, 379(1): 54
[6] Fattah-alhosseini A, Soltani F, Shirsalimi F, et al. The semiconducting properties of passive films formed on AISI 321 stainless steel: A test of the point defect model (PDM)[J]. Corros. Sci., 2001, 53(10): 3186
[7] Frankel G S.Pitting corrosion of metals: A review of the critical factors[J]. J. Electrochem. Soc., 1998, 145(6): 2186
[8] Cheng X Q, Li X G, Du C W.Properties of passive film formed on 316L/2205 stainless steel by Mott-Schottky theory and constant current polarization method[J]. Chin. Sci. Bull., 2009, 54(13): 2239
[9] Deng B, Jiang Y M, Gong J, et al.Critical pitting and repassivation temperatures for duplex stainless steel in chloride solutions[J]. Electrochem. Acta, 2008, 53(16): 5220
[10] Jin S, Liu C M, Lin X, et al.Effect of inorganic anions on the corrosion behavior of UNS S32750 duplex stainless steel in chloride solution[J]. Mater. Corros., 2015, 66(10): 1077
[11] Hou B R.Theory and Application of Marine Corrosion Environment [M]. Beijing: Science Press, 1999
[11] (侯保荣 .海洋腐蚀环境理论及其应用 [M]. 北京: 科学出版社,1999)
[12] Qiao Y X, Zheng Y G, Ke W, et al.Electrochemical behaviour of high nitrogen stainless steel in acidic solutions[J]. Corros. Sci., 2009, 51(5): 979
[13] Hamada E, Yamada K, Nagoshi M, et al.Direct imaging of native passive film on stainless steel by aberration corrected STEM[J]. Corros. Sci., 2010, 52(12): 3851
[14] Ningshen S, Kamachi Mudali U, Mittal V K, et al.Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels[J]. Corros. Sci., 2007, 49(2): 481
[15] Bastos A C, Ferreira M G S, Sim?es A M. Comparative electrochemical studies of zinc chromate and zinc phosphate as corrosion inhibitors for zinc[J]. Prog. Inorgan. Coat., 2005, 52(4): 339
[16] Liu C, Bi Q, Leyland A, et al.An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II.: EIS interpretation of corrosion behavior[J]. Corros. Sci., 2003, 45(6): 1257
[17] Ningshen S, Mudali U K, Mittal V K, et al.Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels[J]. Corros. Sci., 2007, 49(2): 481
[18] Geringer J, Macdonald D D.Modeling fretting-corrosion wear of 316L SS against poly (methyl methacrylate) with the Point Defect Model: Fundamental theory, assessment, and outlook[J]. Electrochim. Acta, 2012, 79(4): 17
[19] Ge H H, Guo R F, Guo Y S, et al.Scale and corrosion inhibition of three water stabilizers used in stainless steel condensers[J]. Corrosion, 2008, 64(6): 553
[1] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] ZHANG Rui,LI Yu,GUAN Lei,WANG Guan,WANG Fuyu. Effect of Heat Treatment on Electrochemical Corrosion Behavior of Selective Laser Melted Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[4] Shaokun YAN,Dajiang ZHENG,Jiang WEI,Guangling SONG,Lian ZHOU. Electrochemical Activation of Passivated Pure Titanium in Artificial Seawater[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[5] Haisheng TONG,Yanhui SUN,Yanjing SU,Xiaolu PANG,Kewei GAO. Investigation on Hydrogen-induced Cracking Behavior of 2205 Duplex Stainless Steel Used for Marine Structure[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[6] Dong LIU,Hongliang XIANG,Chunyu LIU. XPS Analysis of Corrosion Product Scale on Surface of Silver-bearing Antibacterial Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[7] Ming LIU,Xuequn CHENG,Xiaogang LI,Tianjian LU. Corrosion Resistance Mechanisms of Passive Films Formed on Low Alloy Rebar Steels in Liquor of Cement Extract[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[8] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[9] Zihan LIAO, Bo SONG, Ze REN, Chuan HE, Xu CHEN. Electrochemical Corrosion Behavior of Matrix and Weld Seam of X70 Steel in Na2CO3+NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[10] Guangyu LI, Mingkai LEI. Composition and Semi-conductive Characteristic of Passive Film Formed on γΝ-phase in a Borax Buffer Solution[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.
[11] Jianchun ZHANG,Jingyang JIANG,Yang LI,Jinjie SHI,Longfei ZUO,Danqian WANG,Han MA. Passive Films Formed on Seawater Corrosion Resistant Rebar 00Cr10MoV in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2016, 36(5): 441-449.
[12] Xinqiang WU,Yao FU,Wei KE,Song XU,Bing FENG,Botao HU,Jiazheng LU. Corrosion Behavior of High Nitrogen Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2016, 36(3): 197-204.
[13] Yangheng LI,Yu ZUO,Yuming TANG,Xuhui ZHAO. Pitting Corrosion Behavior of Q235 Carbon Steel in NaHCO3+NaCl Solution under Strain[J]. 中国腐蚀与防护学报, 2016, 36(3): 238-244.
[14] WANG Xueying, WANG Jia, LIU Zaijian, DING Jian, WANG Haijie. Local Electrochemical Probe for Detecting Coating Defects on Inner Wall of Metal Can in Atmosphere[J]. 中国腐蚀与防护学报, 2015, 35(2): 169-176.
[15] LIU Zhiyong, JIA Jinghuan, DU Cuiwei, LI Xiaogang, WANG Liying. Corrosion Behavior of X80 and X52 Steels in Simulated Seawater Environments[J]. 中国腐蚀与防护学报, 2014, 34(4): 327-332.
No Suggested Reading articles found!