Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (6): 939-947    DOI: 10.11902/1005.4537.2021.337
Current Issue | Archive | Adv Search |
Corrosion Inhibition of Aluminum in HCl Solution by Flos Sophorae Immaturus Extract
LEI Ran, SHI Chengjie, LI Xianghong()
Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Chemical Engineering, Southwest Forestry University, Kunming 650224, China
Cite this article: 

LEI Ran, SHI Chengjie, LI Xianghong. Corrosion Inhibition of Aluminum in HCl Solution by Flos Sophorae Immaturus Extract. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 939-947.

Download:  HTML  PDF(5750KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Flos Sophorae Immaturus extract (FSIE) was acquired by ultrasonic extraction method with ethanol solution as extract agent. The corrosion inhibition of Al-plate in 1.0 mol/L HCl solution by FSIE was studied for the first time by means of mass loss measurement, electrochemical method and surface analysis (SEM and AFM). The functional groups of FSIE and the formed inhibition film on Al is characterized by FTIR. The results show that FSIE has a significant inhibition effect on Al in 1.0 mol/L HCl solution. The inhibition efficiency enhances with the increase of FSIE concentration, while decreases with the increasing temperature. The inhibition efficiency can reaches 83.2% for a dose of 500 mg/L FSIE at 20 ℃. The adsorption of FSIE on Al surface conforms to Langmuir adsorption isotherm, and the adsorption type is a mixture of physical and chemical adsorption while mainly the physical adsorption. Potentiodynamic polarization curves show that FSIE is a cathodic inhibitor that prominently inhibits the cathodic hydrogen evolution. The capacitive arc in Nyquist plot at high frequencies increases with the concentration of PSIE. The inhibited aluminum surface by FSIE exhibits low corrosion extent as well as low surface roughness. FTIR confirms that FSIE can efficiently adsorb on Al surface to from inhibition film.

Key words:  Flos Sophorae Immaturus extract      Al      HCl      inhibition      adsorption     
Received:  25 November 2021     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52161016);National Natural Science Foundation of China(51761036);Joint Key Project of Agricultural Fundamental Research in Yunnan Province(2017FG001(-004));Fundamental Research Project for Distinguished Young Scholars in Yunnan Province(202001AV070008);Special Project of "Top Young Talents" of Yunnan Ten Thousand Talents Plan(51900109);Yunnan Provincial Education Department Scientific Research Fund Project(2021J0147);Yunnan University Student Innovation and Entrepreneurship Training Program(202110677014)
About author:  LI Xianghong, E-mail: xianghong-li@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.337     OR     https://www.jcscp.org/EN/Y2022/V42/I6/939

Fig.1  Variations of ηwand v with FSIE concentration in 1.0 mol/L HCl solution at different temperatures
Fig.2  Fitted straight lines of c/θ vs.c curvesin 1.0 mol/L HCl solution at different temperatures
T / ℃r2SlopeInterceptK / L·mg-1
200.99561.0397.891.02×10-2
250.99411.09116.948.55×10-3
300.99231.14172.655.79×10-3
350.99240.98298.213.35×10-3
400.99651.00383.342.61×10-3
Table 1  Adsorption parameters of aluminum in 1.0 mol/L HCl solutions containing FSIE at different temperatures
Fig.3  Fitted straight line of lnK-1/T in 1.0 mol/L HCl solution at different temperatures
T / ℃ΔH0/ kJ·mol-1ΔS0 / J·K-1·mol-1G0 / kJ·mol-1
20-54.99-110.92-22.49
25-54.99-109.26-22.43
30-54.99-109.44-21.83
35-54.99-110.62-20.92
40-54.99-110.29-20.47
Table 2  Thermodynamic parameters of adsorption of FSIE on aluminum surface
Fig.4  Fitted straight lines of lnv-1/T curvesin 1.0 mol/L HCl solution at different temperatures
Fig.5  Corrosion kinetics parameters of Al in 1.0 mol/L HCl solutions containing different concentrations of FSIE
Fig.6  Potential polarization curves of aluminum in 1.0 mol/L HCl solutions containing different concentrations of FSIE at 20 ℃
c / mg·L-1-Ecorr / mVIcorr / mA·cm-2-bc / mV·dec-1ηp / %
086977.64359---
5092534.7423955.2
25094924.6221468.3
5009067.7317490.6
Table 3  Fitting parameters of potentiodynamic polarization curves of aluminum in 1.0 mol/L HCl solutions containing different concentrations of FSIE at 20 ℃
Fig.7  Electrochemical impedance spectra of aluminum in 1.0 mol/L HCl solutions containing different concentrations of FSIE at 20 ℃: (a) Nyquist plots, (b) Bode modulus, (c) Bode phase angle plots
Fig.8  Equivalent circuit diagram for EIS data fitting
c / mg·L-1Rs / Ω·cm2Rt / Ω·cm2aL / H·cm2RL / Ω·cm2fmax / HzQ / μΩ-1·s a ·cm-2Cdl / μF·cm-2χ2ηR / %
01.03313.10.97822.7621.23912784.79113.256.271×10-3---
501.03519.730.97154.7351.78912783.38130.328.302×10-333.6
2500.971333.780.966010.092.27922131.65126.154.136×10-355.1
5001.71245.080.98229.9464.24341.872.8491.336.815×10-370.9
Table 4  Fitting parameters of EIS of aluminum in 1.0 mol/L HCl solutions containing different concentrations of FSIE at 20 ℃
Fig.9  SEM surface images of aluminum before (a) and after immersion at 20 ℃ for 2 h in 1.0 mol/L HCl solutions containing 0 mg/L (b) and 500 mg/L (c) FSIE
Fig.10  AFM surface images of aluminum before (a) and after immersion at 20 ℃ for 2 h in 1.0 mol/L HCl solutions containing 0 mg/L (b) and 500 mg/L (c) FSIE
Aluminum surfaceRa / nmRq / nmP-V / nm
Before immersion5.166.8551.8
HCl80.31171006
HCl+FSIE44.963.1602.4
Table 5  AFM microstructure roughness parameters of aluminum surface
Fig.11  Infrared spectra of FSI, FSIE and corrosion products formed on Al immersed in HCl solution containing FSIE
Fig.12  HPLC profiles of FSIE (a), quercetin (b) and rutin (c)
Fig.13  Standard curves of quercetin (a) and rutin (b)
Fig.14  Chemical structures of quercetin (a), rutin (b) and complex of Al3+ and flavonoids (c)
[1] Loto R T, Adeleke A. Corrosion of aluminum metal matrix composites: a review of the effect of manufacturing processes, processing routes and secondary phases [J]. Mater. Sci. Forum, 2021, 1042: 89
doi: 10.4028/www.scientific.net/MSF.1042.89
[2] Prabhu D, Rao P. Coriandrum sativum L.-A novel green inhibitor for the corrosion inhibition of aluminium in 1.0 M phosphoric acid solution [J]. J. Environ. Chem. Eng., 2013, 1: 676
doi: 10.1016/j.jece.2013.07.004
[3] Li X H, Deng S D, Xu X. Inhibition effect of walnut green husk extract on aluminum in HNO3 solution [J]. Corros. Prot., 2019, 40: 655
(李向红, 邓书端, 徐昕. 核桃青皮提取物对铝在HNO3溶液中的缓蚀作用 [J]. 腐蚀与防护, 2019, 40: 655)
[4] Wang X, Wang F Y, Chen Y X, et al. Research progress of plant extract as green corrosion inhibitor [J]. Corros. Sci. Prot. Technol., 2017, 29: 85
(王霞, 王飞宇, 陈玉祥 等. 植物提取液作为绿色缓蚀剂的研究进展 [J]. 腐蚀科学与防护技术, 2017, 29: 85)
[5] Prabhu D, Rao P. Adsorption and inhibition action of a novel green inhibitor on aluminium and 6063 aluminium alloy in 1.0 M H3PO4 solution [J]. Procedia Mater. Sci., 2014, 5: 222
doi: 10.1016/j.mspro.2014.07.261
[6] Deyab M A. Corrosion inhibition of aluminum in biodiesel by ethanol extracts of rosemary leaves [J]. J. Taiwan Inst. Chem. Eng., 2016, 58: 536
doi: 10.1016/j.jtice.2015.06.021
[7] Njoku D I, Ukaga I, Ikenna O B, et al. Natural products for materials protection: corrosion protection of aluminium in hydrochloric acid by Kola nitida extract [J]. J. Mol. Liq., 2016, 219: 417
doi: 10.1016/j.molliq.2016.03.049
[8] Li X H, Deng S D, Xie X G, et al. Inhibition effect of bamboo leaf extract on the corrosion of aluminum in HCl solution [J]. Acta Phys.-Chim. Sin., 2014, 30: 1883
doi: 10.3866/PKU.WHXB201407161
(李向红, 邓书端, 谢小光 等. 竹叶提取物对铝在HCl溶液中的缓蚀作用 (英文) [J]. 物理化学学报, 2014, 30: 1883)
[9] Qiu L, Liang L, Qiu X Y, et al. Optimization in extracting rutin from sophora japonica by applying response surface analysis methodology [J]. Food Res. Dev., 2018, 39(2): 97
(邱岚, 梁琍, 邱学云 等. 响应面分析法优化槐米中芦丁提取工艺 [J]. 食品研究与开发, 2018, 39(2): 97)
[10] Dong Q C, Zhang G H, Zhang W B, et al. Corrosion inhibition of Q235 steel by ionic liquid based on the 2-(dimethylamino) ethyl methacrylate [J]. Chem. J. Chin. Univ., 2019, 40: 2556
(董秋辰, 张光华, 张万斌 等. 甲基丙烯酸二甲氨基乙酯类离子液体对Q235钢的缓蚀性能 [J]. 高等学校化学学报, 2019, 40: 2556)
[11] Li N, Liu X Y, Liu J X, et al. Inhibition action of Dendrocalmus latifcorus munro leaves extract on aluminium in HNO3 solution [J]. Clean. World, 2016, 32(6): 5
(李楠, 刘祥义, 刘建祥 等. 麻竹竹叶提取物对铝在HNO3介质中的缓蚀性能 [J]. 清洗世界, 2016, 32(6): 5)
[12] Tang M, Li X H. Corrosion inhibition of rare earth salt of ceric sulfate on 1060 aluminum sheet in HCl solution [J]. Appl. Chem. Ind., 2021, 50: 702
(唐敏, 李向红. HCl中稀土盐硫酸高铈对1060铝板的缓蚀性能研究 [J]. 应用化工, 2021, 50: 702)
[13] Li X H, Deng S D, Lin T, et al. Cassava starch-sodium allylsulfonate-acryl amide graft copolymer as an effective inhibitor of aluminum corrosion in HCl solution [J]. J. Taiwan Inst. Chem. Eng., 2018, 86: 252
doi: 10.1016/j.jtice.2018.03.002
[14] Wang X, Ren S F, Zhang D X, et al. Inhibition effect of soybean meal extract on corrosion of Q235 steel in hydrochloric acid medium [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 267
(王霞, 任帅飞, 张代雄 等. 豆粕提取物在盐酸中对Q235钢的缓蚀性能 [J]. 中国腐蚀与防护学报, 2019, 39: 267)
[15] Li X H, Deng S D, Fu H. Inhibition of the corrosion of steel in HCl, H2SO4 solutions by bamboo leaf extract [J]. Corros. Sci., 2012, 62: 163
doi: 10.1016/j.corsci.2012.05.008
[16] Chen W, Guan C P, Yang S M, et al. Corrosion inhibition of equisetum ramosissimum extractive for carbon steel in hydrochloric acid solution [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 177
(陈文, 管春平, 杨申明 等. 节节草提取物在盐酸介质中对碳钢的缓蚀行为研究 [J]. 中国腐蚀与防护学报, 2016, 36: 177)
[17] Xu X, Deng S D, Li X H. Inhibition action of dodecyl dimethyl betaine on cold rolled steel in H2SO4 solution [J]. Corros. Sci. Prot. Technol., 2019, 31: 251
(徐昕, 邓书端, 李向红. 十八烷基二甲基甜菜碱对冷轧钢在H2SO4溶液中的缓蚀性能 [J]. 腐蚀科学与防护技术, 2019, 31: 251)
[18] Mu G N, Li X M, Li F. Synergistic inhibition between o-phenanthroline and chloride ion on cold rolled steel corrosion in phosphoric acid [J]. Mater. Chem. Phys., 2004, 86: 59
doi: 10.1016/j.matchemphys.2004.01.041
[19] Zakaria K, Hamdy A, Abbas M A, et al. New organic compounds based on siloxane moiety as corrosion inhibitors for carbon steel in HCl solution: weight loss, electrochemical and surface studies [J]. J. Taiwan Inst. Chem. Eng., 2016, 65: 530
doi: 10.1016/j.jtice.2016.05.036
[20] Li X H, Li N, Liu J X, et al. Inhibition effect of cassawa starch graft copolymer on cold rolled steel in CH3COOH solution [J]. Clean. World, 2015, 31(12): 24
(李向红, 李楠, 刘建祥 等. 木薯淀粉接枝共聚物对冷轧钢在CH3COOH溶液中的缓蚀作用 [J]. 清洗世界, 2015, 31(12): 24)
[21] Mu G N, Li X H, Qu Q, et al. Corrosion inhibition mechanism of tween-60 for cold rolled steel in hydrochloric acid solution [J]. J. Chem. Ind. Eng., 2005, 56: 2150
(木冠南, 李向红, 屈庆 等. 盐酸介质中吐温-60对冷轧钢的缓蚀作用机理 [J]. 化工学报, 2005, 56: 2150)
[22] Li X H, Deng S D, Xu X. Inhibition action of cassava starch ternary graft copolymer on steel in H2SO4 solution [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 105
(李向红, 邓书端, 徐昕. 木薯淀粉三元接枝共聚物对钢在H2SO4溶液中的缓蚀性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 105)
[23] Wang D P, Gao L X, Zhang D Q, et al. Experimental and theoretical investigation on corrosion inhibition of AA5052 aluminium alloy by L-cysteine in alkaline solution [J]. Mater. Chem. Phys., 2016, 169: 142
doi: 10.1016/j.matchemphys.2015.11.041
[24] Li X H, Deng S D, Xie X G. Experimental and theoretical study on corrosion inhibition of oxime compounds for aluminium in HCl solution [J]. Corros. Sci., 2014, 81: 162
doi: 10.1016/j.corsci.2013.12.021
[25] Yurt A, Ulutas S, Dal H. Electrochemical and theoretical investigation on the corrosion of aluminium in acidic solution containing some Schiff bases [J]. Appl. Surf. Sci., 2006, 253: 919
doi: 10.1016/j.apsusc.2006.01.026
[26] Zhao J M, Chen G H. The synergistic inhibition effect of oleic-based imidazoline and sodium benzoate on mild steel corrosion in a CO2-saturated brine solution [J]. Electrochim. Acta, 2012, 69: 247
doi: 10.1016/j.electacta.2012.02.101
[27] Gutiérrez E, Rodríguez J A, Cruz-borbolla J, et al. Development of a predictive model for corrosion inhibition of carbon steel by imidazole and benzimidazole derivatives [J]. Corros. Sci., 2016, 108: 23
doi: 10.1016/j.corsci.2016.02.036
[1] JIANG Bochen, LEI Yanhua, ZHANG Yuliang, LI Xiaofeng, LIU Tao, DONG Lihua. Research Progress on Application of Functional Superhydrophobic Coatings for Anti-icing in Polar Regions[J]. 中国腐蚀与防护学报, 2024, 44(1): 1-14.
[2] XIONG Yiming, MEI Wan, WANG Zehua, YU Rui, XU Shiyao, WU Lei, ZHANG Xin. Corrosion Behavior of 5083 Al-alloy under Magnetic Field[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[3] SONG Dongdong, WAN Hongxia, XU Dong, ZHOU Qian. Influence of Rolling on Corrosion Behavior of ZM5 Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
[4] YUAN Xiaohu, LI Dingjun, WANG Tianjian, GUO Xianping, ZHANG Naiqiang, ZHU Zhongliang. Oxidation Behavior of Three Different Ni-Cr Coatings in 630oC/25 MPa Supercritical Water[J]. 中国腐蚀与防护学报, 2024, 44(1): 119-129.
[5] ZHAO Guoxian, LIU Ranran, DING Langyong, ZHANG Siqi, GUO Menglong, WANG Yingchao. Effect of Temperature on CO2-inducedCorrosion Behavior of 5Cr Steel in a Simulated Oilfield Produced High-temperature and High-pressured Water[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[6] LIU Jingyuan, ZANG Qing'an, SUN Changjun, ZHANG Cuiqing, LI Xiaofeng. Research Progress on Corrosion and Protection of Water System for Coal Gasification[J]. 中国腐蚀与防护学报, 2024, 44(1): 27-37.
[7] XIE Yun, LIU Ting, WANG Wen, ZHOU Jialin, TANG Song. Effect of Microstructure on Corrosion Resistance of a High-strength Ultralightweight Mg-Li Alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
[8] ZHANG Yuguo, SUN Congtao, ZHANG Peng, SUN Ming, GENG Yuanjie, FAN Liang, ZHAI Xiaofan, DUAN Jizhou. Effect of Synthetic Calcium Silicate Hydrate (C-S-H) on Combination of Chloride Ions with Cementitious Materials[J]. 中国腐蚀与防护学报, 2024, 44(1): 197-203.
[9] WANG Jingyu, ZHOU Xuejie, WANG Honglun, WU Jun, CHEN Hao, ZHENG Penghua. Initial Corrosion Behavior of Carbon Steel and High Strength Steel in South China Sea Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 237-245.
[10] MA Yan, LAN Yuning, CHEN Jiawei. A Novel Cross-sectional Metallography Method for Determining Hydrogen Absorption Concentration and Hydrogen Absorption Amount of Zr-Sn-Nb Alloy Cladding Caused by High Temperature Water Corrosion[J]. 中国腐蚀与防护学报, 2024, 44(1): 261-266.
[11] BIAN Yafei, TANG Wenming, ZHANG Jie, MAO Ruirui, MIAO Chunhui, CHEN Guohong. Soil Corrosion Characteristics of Q235 Steel Grounding Material Used in Power Grid in Anhui Province[J]. 中国腐蚀与防护学报, 2024, 44(1): 130-140.
[12] BAI Xuehan, DING Kangkang, ZHANG Penghui, FAN Lin, ZHANG Huixia, LIU Shaotong. Accelerated Corrosion Test of AH36 Ship Hull Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 187-196.
[13] SUN Shuo, DAI Jiaming, SONG Yingwei, AI Caijiao. Corrosion Behavior of Extruded EW75 Mg-alloy in Shenyang Industrial Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[14] JIANG Guangrui, LIU Guanghui, SHANG Ting. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of ZnAlMg Coating[J]. 中国腐蚀与防护学报, 2024, 44(1): 246-254.
[15] MA Shide, CHEN Xin, TAI Yu, REN Haitao, HAN Wen, GUO Weimin, DUAN Jizhou. Ecological Study on Fouling Organisms in a Marine Environmental Test Station Situated at Sanya Bay[J]. 中国腐蚀与防护学报, 2024, 44(1): 38-46.
No Suggested Reading articles found!