Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (3): 395-402    DOI: 10.11902/1005.4537.2021.254
Current Issue | Archive | Adv Search |
Effect of Surface Oxides on Wear Resistance of New F-Class Marine Low Temperature Steel
WANG Chaoyi1, XIA Chengxiang2, WANG Dongsheng2, QIANG Qiang2, ZHAO Ziming2, CHANG Xueting2()
1.Ansteel Beijing Research Institute Co. Ltd. , Beijing 102200, China
2.College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
Download:  HTML  PDF(3966KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A new F-class marine low-temperature steel plate was firstly pre-corroded to form different oxide scales. Then their reciprocating friction behavior was characterized by means of white light interferometer and scanning electron microscope in terms of the microstructure and wear morphology of the worn steel samples. The results show that the corrosion resistance of the steel samples with γ-FeOOH oxide scale, the original steel samples, and the steel samples with Fe3O4 oxide scale become higher in turn. Among them, the steel sample with the dense and complete Fe3O4 oxide scale has the lowest amount of wear, the wear scar profile is the shallowest and narrowest, and the surface is dominated by adhesive abrasion, and the corrosion resistance is also the best; the γ-FeOOH oxide scale on the steels is relatively loose with smallest friction coefficient, but the amount of wear is the largest by the coupling of friction and corrosion; the wear mechanism of the steels with the two oxide scales is mainly abrasive wear, and the surface of the untreated steel presents more furrows and pits.

Key words:  low-carbon alloy steel      oxide      polar ship      friction corrosion      coupling action     
Received:  23 September 2021     
ZTFLH:  TG174  
Fund: Technical Standard Project of Shanghai Science and Technology Commission(21DZ2205700);"Dawn" Plan of Shanghai Municipal Education Commission(19sg46);International Cooperation and Exchange Project of the Ministry of Science and Technology(cu03-29);Shanghai Deep Sea Material Engineering Technology Center(19dz2253100)
Corresponding Authors:  CHANG Xueting     E-mail:  xtchang@shmtu.edu.cn
About author:  CHANG Xueting, E-mail: xtchang@shmtu.edu.cn

Cite this article: 

WANG Chaoyi, XIA Chengxiang, WANG Dongsheng, QIANG Qiang, ZHAO Ziming, CHANG Xueting. Effect of Surface Oxides on Wear Resistance of New F-Class Marine Low Temperature Steel. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 395-402.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.254     OR     https://www.jcscp.org/EN/Y2022/V42/I3/395

Fig.1  Photographs of the blank steel sample (a) and pre-oxidized steel samples with γ-FeOOH layer (b) and Fe3O4 layer (c)
Fig.2  XRD patterns of γ-FeOOH (a) and Fe3O4 (b) oxide scales formed on two pre-oxidized steel samples
Fig.3  SEM surface images of γ-FeOOH (a) and Fe3O4 (b) oxide scales formed on two pre-oxidized steel samples
Fig.4  Polarization curves of the blank and pre-oxidized steel samples
SampleIcorr / μA·cm-2Ecorr / VSCEβc / mV·dec-1βa / mV·dec-1C-rate / 10-3 mm·a-1
Original sample1.32-0.74-69475.27
Fe3O40.62-0.68-2121262.84
γ-FeOOH1.29-0.73-109895.13
Table 1  Fitting parameters of polarization curves of blank and pre-oxidized steel samples
Fig.5  Nyquist plots of the blank and pre-oxidized steel samples
Fig.6  Equivalent circuit diagrams of EIS of the blank steel (a) and pre-oxidized steel (b)
StellRs / Ω·cm2QfRf / Ω·cm2QdRt / Ω·cm2
Y0 / 10-4 Ω-1·cm-2·snnY0 / 10-4 Ω-1·cm-2·snn
Original sample14.25---------16.760.7031452
Fe3O423.2652.360.791160.62460.653590
γ-FeOOH6.223.80.6575100.71292
Table 2  Fitting parameters of EIS of the blank steel and pre-oxidized steel
Fig.7  Friction coefficients (a) and average friction coeffic-ients (b) of the blank and pre-oxidized steel samples
Fig.8  Cross sections of wear scar profiles of the blank and pre-oxidized steel samples
Fig.9  Abrasions of the blank and pre-oxidized steel samples
Fig.10  Friction and wear morphologies of the blank steel (a, b) and two pre-oxidized steel samples with Fe3O4 (c, d) and γ-FeOOH (e, f) oxide scales
1 Yang Y, Cheng X Q, Zhao J B, et al. A study of rust layer of low alloy structural steel containing 0.1%Sb in atmospheric environment of the Yellow Sea in China [J]. Corros. Sci., 2021, 188: 109549
2 Wang Y F, Li J G, Wang Q F, et al. Some new discoveries on the structure of the rust layer of weathering steel in a simulated industrial atmosphere by STEM-EDS and HRTEM [J]. Corros. Sci., 2021, 183: 109322
3 Zhou L J, Yang S W. Investigation on crack propagation in band-like rust layers on weathering steel [J]. Constr. Build. Mater., 2021, 281: 122564
4 Gong K, Wu M, Xie F, et al. Effect of Cl- and rust layer on stress corrosion cracking behavior of X100 steel base metal and heat-affected zone in marine alternating wet/dry environment [J]. Mater. Chem. Phys., 2021, 270: 124826
5 Li Z R, Zhang D C, Wu H Y, et al. Fatigue properties of welded Q420 high strength steel at room and low temperatures [J]. Constr. Build. Mater., 2018, 189: 955
6 Chen W J, Fang L, Pan G. Corrosion evolution characteristics of Q235B Steel in O3/SO2 composite atmosphere [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 450
陈文娟, 方莲, 潘刚. O3/SO2复合大气环境中Q235B钢的腐蚀演化特性 [J]. 中国腐蚀与防护学报, 2021, 41: 450
7 Li L, Chen Y Q, Gao P. Corrosion resistance of various bridge steels in deicing salt environments [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 448
李琳, 陈义庆, 高鹏. 除冰盐环境下桥梁钢的耐腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 448
8 Shi J, Hu X W, Zhang D L, et al. Influence of microstructure on corrosion resistance of high strength weathering steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 721
石践, 胡学文, 张道刘等. 显微组织对高强耐候钢腐蚀性能的影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 721
9 Hua Y, Xu S H, Wang Y, et al. The formation of FeCO3 and Fe3O4 on carbon steel and their protective capabilities against CO2 corrosion at elevated temperature and pressure [J]. Corros. Sci., 2019, 157: 392
10 Hu J, He S J, Wang Z, et al. Stearic acid-coated superhydrophobic Fe2O3/Fe3O4 composite film on N80 steel for corrosion protection [J]. Surf. Coat. Technol., 2019, 359: 47
11 Robineau M, Romaine A, Sabot R, et al. Galvanic corrosion of carbon steel in anoxic conditions at 80 °C associated with a heterogeneous magnetite (Fe3O4) /mackinawite (FeS) layer [J]. Electrochim. Acta, 2017, 255: 274
12 Sun J R, Wang Z G, Zhang H P, et al. Structural, mechanical and magnetic properties studies on high-energy Kr-ion irradiated Fe3O4 material (main corrosion layer of Fe-based alloys) [J]. J. Nucl. Mater., 2014, 455: 685
13 Kumar R, Gautam S, Hwang I C, et al. Preparation and characterization of α-Fe2O3 polyhedral nanocrystals via annealing technique [J]. Mater. Lett., 2009, 63: 1047
14 Tjong S C, Chen H. Nanocrystalline materials and coatings [J]. Mater. Sci. Eng., 2004, 45B: 1
15 Kamat P V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles [J]. J. Phys. Chem., 2002, 106B: 7729
16 El-Mahdy G A, Atta A M, Al-Lohedan H A. Synthesis and characterizations of Fe3O4 nanogel composite for enhancement of the corrosion resistance of steel in HCl solutions [J]. J. Taiwan Inst. Chem. Eng., 2014, 45: 1947
17 Zhan Y Q, Zhang J M, Wan X Y, et al. Epoxy composites coating with Fe3O4 decorated graphene oxide: Modified bio-inspired surface chemistry, synergistic effect and improved anti-corrosion performance [J]. Appl. Surf. Sci., 2018, 436: 756
18 China Classification Society. Code for materials and welding [R]. Beijing: China Classification Society, 2018
中国船级社. 材料与焊接规范 [R]. 北京: 中国船级社, 2018
19 Yu X L, Jiang Z Y, Wei D B, et al. Tribological properties of magnetite precipitate from oxide scale in hot-rolled microalloyed steel [J]. Wear, 2013, 302: 1286
20 Park J O, Rhee K Y, Park S J. Silane treatment of Fe3O4 and its effect on the magnetic and wear properties of Fe3O4/epoxy nanocomposites [J]. Appl. Surf. Sci., 2010, 256: 6945
21 Ma F L, Li J L, Zeng Z X, et al. Tribocorrosion behavior in artificial seawater and anti-microbiologically influenced corrosion properties of TiSiN-Cu coating on F690 steel [J]. J. Mater. Sci. Technol., 2019, 35: 448
22 Tan L W, Wang Z W, Ma Y L. Tribocorrosion behavior and degradation mechanism of 316L stainless steel in typical corrosive media [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 813
23 Lee L, Behera P, Sriraman K R, et al. Effects of humidity on the sliding wear properties of Zn-Ni alloy coatings [J]. RSC Adv., 2017, 7: 22662
24 Zheng Y X, Liu Y, Song Q S, et al. High-temperature oxidation behavior and wear resistance of copper-based composites with Reinforcers of C, ZrSiO4 and Fe [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 191
[1] LIU Shuhui, LIU Bin, XU Dawei, LIU Yu, CHEN Fanwei, LIU Siqi. Research Progress on Anti-corrosion Coatings of Layered Double Hydroxides[J]. 中国腐蚀与防护学报, 2022, 42(1): 16-24.
[2] SHAO Yinhua, WANG Jinlong, ZHANG Wei, ZHANG Jia, LI Ling, DU Xiran, CHEN Minghui, ZHU Shenglong, WANG Fuhui. High Temperature Oxidation Behavior of a Heat Resistant Magnesium Alloy Mg-14Gd-2.3Zn-Zr[J]. 中国腐蚀与防护学报, 2022, 42(1): 73-78.
[3] WANG Laibin, LIU Xiahe, WANG Mei, GAO Junjie. Research Status and Progress on Growth Kinetics of Trivalent Chromium-based Conversion Film[J]. 中国腐蚀与防护学报, 2021, 41(5): 571-578.
[4] LUAN Hao, MENG Fandi, LIU Li, CUI Yu, LIU Rui, ZHENG Hongpeng, WANG Fuhui. Preparation and Anticorrosion Performance of M-phenylenediamine-graphene Oxide/Organic Coating[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[5] XIE Dongbai, HONG Hao, WANG Wen, PENG Xiao, DUO Shuwang. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[6] WANG Tingyong, DONG Ruyi, XU Shi, WANG Hui. Electrochemical Properties of Graphene Modified Mixed Metal Oxide Anodes of Ti/IrTaSnSb-G in NaCl Solutions at Low Temperature[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[7] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[8] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[9] OUYANG Yuejun,HU Ting,WANG Jiayin,XIE Zhihui. Electrochemical Deposition and Characterization of Layered Double Hydroxide Film on Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[10] WEI Xinxin,ZHANG Bo,MA Xiuliang. TEM Investigation to Oxide Scale Formed on Single Crystal Alloy FeCr15Ni15 at High Temperature[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[11] CHEN Chao,LIANG Yanfen,LIANG Tianquan,MAN Quanyan,LUO Yidong,ZHANG Xiuhai,ZENG Jianmin. Research Progress on Hot Corrosion of Rare Earth Oxides Co-doped ZrO2 Ceramic Coatings in Molten Na2SO4+NaVO3 Salts[J]. 中国腐蚀与防护学报, 2019, 39(4): 291-298.
[12] DENG Junhao,HU Jiezhen,DENG Peichang,WANG Gui,WU Jingquan,WANG Kun. Effect of Oxide Scales on Initial Corrosion Behavior of SPHC Hot Rolled Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[13] Taotao XU, Zhuqiao CHEN, Weiping TIAN, Cheng WANG, Shenglong ZHU, Fuhui WANG, Tao ZHANG, Minghui CHEN. Protective Performance of a Novel Silicone Coating ES150 Modified with Nano-particulate of Metal for AZ91D Mg-alloy[J]. 中国腐蚀与防护学报, 2018, 38(4): 373-380.
[14] Jianfeng WEI, Hongtian FU, Tingyong WANG, Shi XU, Hui WANG, Haitao WANG. Effect of Sintering Temperature on Properties of Graphene-containing Ti/IrTaSnSb-G Metal Oxide Anodes[J]. 中国腐蚀与防护学报, 2018, 38(3): 248-254.
[15] Li FENG, Ligong ZHANG, Sizhen LI, Dajiang ZHENG, Changjian LIN, Shigang DONG. Effect of Ferric Citrate on Microstructure and Corrosion Resistance of Micro-arc Oxidation Black Film on Mg-alloy AZ40M[J]. 中国腐蚀与防护学报, 2017, 37(4): 360-365.
No Suggested Reading articles found!