Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (3): 378-386    DOI: 10.11902/1005.4537.2021.167
Current Issue | Archive | Adv Search |
Optimization of Titanate Modified Silane Coatings and Their Effect on Corrosion Resistance of 5056 Aluminum Foils
YU Shuaixian1, WU Yajun1, WU Haisheng2, WU Liang1, MA Yanlong3, DENG Shengwei4, SUN Lidong1()
1.School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2.Beijing Spacecrafts, Beijing 100094, China
3.School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
4.South-West Aluminium Sheets & Strips Co. Ltd. , Chongqing 401326, China
Download:  HTML  PDF(9989KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The anodic oxidized 5056 aluminum foil is post sealed with titanate modified silane coupling agent by dip coating method. The effect of solute ratio, dipping duration, drying time and temperature on the foil corrosion resistance is systematically studied. The mechanism related with the enhancement of corrosion resistance induced by the titanate additives is discussed. The results show that a continuous and dense composite film is formed on the surface of anodic coating after sealing with the titanate modified silane coupling agent. The film thickness is uniform on both surfaces of the aluminum foil. The best corrosion resistance is achieved with a composite film formed in the sealing bath with the ratio of Ti to Si=0.3 to 5.7. The coating after sealing exhibits 30 min before the occurrence of coating damage by K2Cr2O7 solution drop testing at 19 ℃, free-corrosion current density of 7.42 nA/cm2, and salt spray test up to 16 d, being higher than those of the single silane coating of 9 min, 1.81×102 nA/cm2, and 8 d, respectively. This is attributed to the spatial network structure of the composite film formed by the titanate stereo framework and the silane additives. This develops dense film on the anodic coatings to retard the corrosive species, and thus promotes the corrosion resistance.

Key words:  5056 aluminum foil      anodic oxidation      silane/titanate sealing      corrosion resistance     
Received:  14 July 2021     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51871037);Chongqing Youth Talents Program(CQYC201905023);National Key Research and Development Program of China(2020YFF0421893)
Corresponding Authors:  SUN Lidong     E-mail:  lidong.sun@cqu.edu.cn
About author:  SUN Lidong, E-mail: lidong.sun@cqu.edu.cn

Cite this article: 

YU Shuaixian, WU Yajun, WU Haisheng, WU Liang, MA Yanlong, DENG Shengwei, SUN Lidong. Optimization of Titanate Modified Silane Coatings and Their Effect on Corrosion Resistance of 5056 Aluminum Foils. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 378-386.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.167     OR     https://www.jcscp.org/EN/Y2022/V42/I3/378

Fig.1  Effects of total solute content and silane/titanate volume ratio in the solutions on corrosion resistance
Fig.2  Drop tests of potassium dichromate solution for 5056 aluminum foil (a), anodic oxide film (b), Ti:Si=0.5:2.5 sealing coating (c), Ti:Si=0.3:5.7 sealing coating (d) and Ti:Si=1:9 sealing coating (e)
Fig.3  Optimizations of immersion time (a), drying time (b) and drying temperature (c) for silane/titaniate sealing coating
Fig.4  SEM surface morphologies of 5056 aluminum foil (a), anodic oxide film (b), silane sealing coating (total solute content: 6%) (c) and silane/titanate sealing coating (total solute content: 6%, Ti:Si=0.3:5.7) (d) and EDS mappings of Si and Ti on the surface of silane/titanate sealing coating (e, f)
Fig.5  SEM cross-sectional morphologies of aluminum foil with silane sealing coating (a) and silane/titanate sealing coating (Ti:Si=0.3:5.7) (b)
Fig.6  Comparison of electrochemical polarization curves of aluminum foil without and with sealing coatings
Fig.7  Photographs of various samples after salt spray tests for different durations: (a) 5056 aluminum foil, (b) anodic oxide film, (c) silane sealing coating (total solute content: 6%) and (d) silane/titanate sealing coating (total solute content: 6%, Ti:Si=0.3:5.7)
Fig.8  FTIR spectra of two sealing coatings on aluminum foil (a) and silane/titanate solutions with different Ti:Si ratios (Note: the ratio is normalized to the Ti content) (b)
Fig.9  Schematic diagram of modification mechanism of silane coating by adding titanate
Fig.10  Effect of silane/titanate solute ratio (Note: the ratio is normalized to the Ti content) on corrosion resistance (Data are from Fig.1)
1 Wang J R, Liu G Q, Lu Z Q, et al. Effect of silanization on adhesion of coating to hot-dip galvanized steel [J]. Electroplat. Finish., 2020, 39: 996
王金荣, 柳桂琦, 逯志强等. 硅烷处理对热镀锌钢表面涂层结合力的影响 [J]. 电镀与涂饰, 2020, 39: 996
2 Xie D M, Feng H, Ma X C. Influence of silane modification on performance of zinc-rich coatings [J]. Corros. Sci. Prot. Technol., 2005, 17: 237
谢德明, 冯海, 马晓春. 硅烷处理对富锌涂层行为的影响 [J]. 腐蚀科学与防护技术, 2005, 17: 237
3 Hu J M, Liu J, Zhang J T, et al. Studies of surface treatment of aluminum alloys by BTSE silane agent [J]. Acta Metall. Sin., 2004, 40: 1189
胡吉明, 刘倞, 张金涛等. 铝合金表面BTSE硅烷化处理研究 [J]. 金属学报, 2004, 40: 1189
4 Shan F R, Yu Z M, Luo L S, et al. Study on surface modification of nano-alumina by silane coupling agent KH550 [J]. New Chem. Mater., 2013, 41(5): 169
单芙蓉, 于志明, 罗丽丝等. 硅烷偶联剂KH550表面改性纳米Al2O3的研究 [J]. 化工新型材料, 2013, 41(5): 169
5 Cui X J, Dai X, Zheng B Y, et al. Effect of KH-550 content on structure and properties of a micro-arc oxidation coating on Mg-alloy AZ31B [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 227
崔学军, 代鑫, 郑冰玉等. KH-550对AZ31B镁合金表面微弧氧化膜结构及性能的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 227
6 Zhang J, Wu C Y, Huang F X, et al. Surface treatment on the AZ31B magnesium alloys by silanization [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 146
张津, 吴超云, 黄福祥等. AZ31B镁合金表面硅烷处理研究 [J]. 中国腐蚀与防护学报, 2008, 28: 146
7 Xu X N, He B J, Zhang G P, et al. Effect of KH560 treatment on corrosion resistance of Al-Al2O3-silane composite coating [J]. J. Mater. Eng., 2020, 48(5): 151
徐小宁, 何保军, 张国鹏等. KH560处理对Al-Al2O3-硅烷复合涂层耐蚀性的影响 [J]. 材料工程, 2020, 48(5): 151
8 Luo Z Z. Study on silanization of anodized film on Al alloy [D]. Harbin: Harbin Engineering University, 2016
罗兆柱. 铝合金阳极氧化膜硅烷改性的研究 [D]. 哈尔滨: 哈尔滨工程大学, 2016
9 Wang Y F, Guo Z C, Wang R M. Preparation and characterization of composite silylanized film layer on Al alloy surface [J]. Mater. Prot., 2007, 40(11): 39
王云芳, 郭增昌, 王汝敏. 铝合金表面复合硅烷化膜层的制备和表征 [J]. 材料保护, 2007, 40(11): 39
10 Shan F J, Liu C S, Wang S H, et al. Study on corrodibility of hot dip Al-Zn layer passivated with La(NO3)3-doped BTESPT solutions [J]. J. Northeast Univ. (Nat. Sci.), 2008, 29: 1122
单凤君, 刘常升, 王双红等. 热镀铝锌层镧掺杂硅烷钝化膜的腐蚀性能 [J]. 东北大学学报 (自然科学版), 2008, 29: 1122
11 Cao J Y, Fang Z G, Chen J H, et al. Preparation and properties of micro-arc oxide film with single dense layer on surface of 5083 aluminum alloy [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 251
曹京宜, 方志刚, 陈晋辉等. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 251
12 Wang X F. The preparation of titanate coupling agent and the study of mechanism of action [D]. Wuhan: Wuhan University of Technology, 2004
王雪飞. 钛酸酯偶联剂的制备及与无机填料作用机理的研究 [D]. 武汉: 武汉理工大学, 2004
13 Guillet A. Treatment of fillers with organofunctional silanes, technology and applications [J]. Macromol. Symp., 2003, 194: 63
14 Yoganandan G, Bharathidasan T, Soumya Sri M, et al. Effect of anodized oxide layer aging on wettability of alkyl silane coating developed on aerospace aluminum alloy [J]. Metall. Mater. Trans., 2015, 46A: 337
15 Collazo A, Ezpeleta I, Figueroa R, et al. Corrosion protection properties of anodized AA2024T3 alloy sealing with organic-based species [J]. Prog. Org. Coat., 2020, 147: 105779
16 Sun L D, Zhang S M, Sun X W, et al. Double-sided anodic titania nanotube arrays: a lopsided growth process [J]. Langmuir, 2010, 26: 18424
17 Shi S R. Study on sealing treatments of micro arc oxidation coatings on Al alloy 6061 [D]. Harbin: Harbin Engineering University, 2013
石世瑞. 6061铝合金微弧氧化涂层封孔处理技术研究 [D]. 哈尔滨: 哈尔滨工程大学, 2013
18 Qiao J S, Xia Z H, Liu L B, et al. Corrosion resistance of aluminum-magnesium bimetal composite material prepared by isothermal indirect extrusion [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 255
乔及森, 夏宗辉, 刘立博等. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能 [J]. 中国腐蚀与防护学报, 2021, 41: 255
19 Wang X G, Gao K W, Yan L C, et al. Effect of Ce on corrosion resistance of films of ZnAlCe-layered double hydroxides on mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 335
王晓鸽, 高克玮, 颜鲁春等. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究 [J]. 中国腐蚀与防护学报, 2021, 41: 335
20 Yu H F, Shao B, Zhang Y, et al. Preparation and properties of Zr-based conversion coating on 2A12 Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 101
于宏飞, 邵博, 张悦等. 2A12铝合金锆基转化膜的制备及性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 101
21 Liu F, Hu C. Study on surface modification of silver-zirconium phosphate using titanate coupling agent [J]. Appl. Chem. Ind., 2017, 46: 841
刘芳, 胡琛. 钛酸酯偶联剂对载银磷酸锆表面改性效果的研究 [J]. 应用化工, 2017, 46: 841
22 Li H L, Dong B, Han Y A, et al. The coupling mechanism and research progress on titanate coupling agents [J]. Surf. Technol., 2012, 41(4): 99
李红玲, 董斌, 韩延安等. 钛酸酯偶联剂的偶联机理及研究进展 [J]. 表面技术, 2012, 41(4): 99
23 Weng S F, Xu Y Z. Fourier Transform Infrared Spectroscopy [M]. 3rd ed. Beijing: Chemical Industry Press, 2016: 355
翁诗甫, 许怡庄. 傅里叶变换红外光谱分析 [M]. 3版. 北京: 化学工业出版社, 2016: 355
24 Peng D D, Wu J S, Chang L J, et al. Preparation and corrosion behaviour of cerium based sol-gel composite coatings on AA2024-T4 aluminum alloy [J]. Electrochemistry, 2016, 84: 143
25 Wan Y, Wang H, Zhang Y D, et al. Study on anodic oxidation and sealing of aluminum alloy [J]. Int. J. Electrochem. Sci., 2018, 13: 2175
26 Kannan B, Glover C F, McMurray H N, et al. Performance of a magnesium-rich primer on pretreated AA2024-T351 in full immersion: a galvanic throwing power investigation using a scanning vibrating electrode technique [J]. J. Electrochem. Soc., 2018, 165: C27
27 Dumitrascu V M, Benea L, Simionescu N L. Evaluation of sealing process on the surface properties of nanoporous aluminum oxide layers electrochemically growth on 1050 aluminum alloy surface [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2018, 374: 012013
28 Zeng D P, Liu Z Y, Bai S, et al. Influence of sealing treatment on the corrosion resistance of PEO coated Al-Zn-Mg-Cu alloy in various environments [J]. Coatings, 2019, 9: 867
[1] ZHAO Baozhu, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Comparison of Corrosion Resistance of CoCrFeMnNi High Entropy Alloys with Pipeline Steels in an Artificial Alkaline Soil Solution[J]. 中国腐蚀与防护学报, 2022, 42(3): 425-434.
[2] DAI Weili, WANG Jinghang, LUO Shuai, DU Ning, LIU Fan, XU Lidong, ZHANG Jun, SONG Yuehong, LIU Yanfeng. Fabrication of Super-hydrophobic Surface on AM60 Mg-alloy and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(2): 301-308.
[3] LI Xujia, HUI Honghai, ZHAO Junwen, WU Guoqiang, DAI Guangze. Effect of MWCNTs Content on Corrosion Resistance of Chromium-free Zinc-aluminum Coatings[J]. 中国腐蚀与防护学报, 2022, 42(2): 324-330.
[4] LIU Yongqiang, LIU Guangming, FAN Wenxue, GAN Hongyu, TANG Rongmao, SHI Chao. Effect of Polyethylene Glycol-600 on Acidic Zn-Ni Alloy Electroplating and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(2): 235-242.
[5] LIU Haochen, FAN Lin, ZHANG Haibing, WANG Yingying, TANG Junlei, BAI Xuehan, SUN Mingxian. Research Progress of Stress Corrosion Cracking of Ti-alloy in Deep Sea Environments[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[6] ZHANG Chengdong, LIU Bin, SHI Zeyao, LIU Yan, CAO Qingmin, JIAN Donghui. Research Progress in Corrosion Behavior of Nickel Aluminum Bronze Alloys in Seawater[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[7] ZHENG Shien, PAN Yingjun, ZHANG Heng, KE Deqing, YANG Ling, ZHU Xingyu. Corrosion Resistance of Boride Cladding Layer on Surface of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[8] ZHOU Dianmai, JIANG Lei, WANG Meiting, LIANG Hongjia, XIAO Yunlong, ZHENG Li, YU Baoyi. Effects of Ce(NO3)2 Concentration and Silicate Sealing Treatment on Calcium Phosphating Film on Surface of Mg-Zn-Y-Ca Alloy for High Speed Railway Corbel[J]. 中国腐蚀与防护学报, 2021, 41(6): 849-856.
[9] LIU Xing, RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, LONG Bin. Effect of Surface State on Corrosion Resistance of TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
[10] DING Yukang, CHEN Guomei, NI Zifeng, LIU Yaxuan, QIAN Shanhua, BIAN Da, ZHAO Yongwu. Corrosion Resistance of Silane Film Modified by Hexagonal Boron Nitride[J]. 中国腐蚀与防护学报, 2021, 41(6): 864-870.
[11] FANG Haojie, QU Hua, YANG Lihui, ZENG Qingya, WANG Lidan, YUAN Ning, HOU Baorong, CAO Lixin, YUAN Xundao. Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[12] LANG Fengjun, HUANG Feng, XU Jinqiao, LI Liwei, YUE Jiangbo, LIU Jing. Composition Design and Corrosion Resistance of Mg Microallyed X70 Grade Acid Resistant Submarine Pipeline Steel (X70MOS)[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[13] FENG Yanpeng, ZHANG Xian, WU Kaiming, YANG Miao. Influence of Heat Treatment Process on Microstructure and Corrosion Resistance of Ultrafine Bainite Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[14] WU Lintao, ZHOU Zehua, ZHANG Xin, YANG Guangheng, ZHANG Kaicheng, WANG Guangyu. Long-term Corrosion Resistance of Plasma Sprayed FeCrMoCBY Fe-based Amorphous Coating in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(5): 717-720.
[15] LIU Hongyu, ZHANG Xiqing, TENG Yingxue, LI Shengli. Corrosion Resistance and Antifouling Performance of Copper-bearing Low-carbon Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
No Suggested Reading articles found!