Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (3): 441-446    DOI: 10.11902/1005.4537.2021.239
Current Issue | Archive | Adv Search |
On-line Corrosion Monitoring Technology for High-speed Train in Dynamic Service Circumstance
SUN Xiaoguang(), WANG Rui, ZHANG Zhiyi, HAN Xiaohui, LI Gangqing
CRRC Qingdao Sifang Co. Ltd. , Qingdao 266111, China
Download:  HTML  PDF(4315KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the expansion of high-speed train operation area and the extension of service duration, corrosion has become an important factor threatening the safety and reliability of trains. Based on electrochemical principle and 4G wireless communication technology, a novel intelligent corrosion monitoring system for structural materials of high-speed train was developed. It was installed on a high-speed train traveling between Beijing and Guangzhou, as well as in three out-door exposure test stations in Wenchang, Wuhan, and Qingdao as a menas to perform comparatively examination of material corrosion. The 6-month continuous corrosion data of an Al-alloy and protective coating of high-speed train car-body, as well as those in the above test stations was collected and analyzed. The data provides important support for predicting the corrosion risk of vehicle structural materials, which is in favor of evaluating the life attenuation of coating and strengthening the safety management of the whole life cycle of high-speed train.

Key words:  high-speed train      corrosion monitoring      Al-alloy      coating     
Received:  15 September 2021     
ZTFLH:  TG174  
Fund: National Key Research and Development Program of China(2020YFE0204900)
Corresponding Authors:  SUN Xiaoguang     E-mail:  sunx_sf@126.com
About author:  SUN Xiaoguang, E-mail: sunx_sf@126.com

Cite this article: 

SUN Xiaoguang, WANG Rui, ZHANG Zhiyi, HAN Xiaohui, LI Gangqing. On-line Corrosion Monitoring Technology for High-speed Train in Dynamic Service Circumstance. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 441-446.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.239     OR     https://www.jcscp.org/EN/Y2022/V42/I3/441

Fig.1  Schematic diagram of corrosion monitoring system
Fig.2  Corrosion monitoring data of 6005A Al-alloy during serving on high speed trains in Wenchang (a), Wuhan (b), Qingdao (c) and Beijing-Guangzhou railway lines (d)
Fig.3  Corrosion monitoring data of the coatings during serving on high speed trains in Wenchang (a), Wuhan (b), Qingdao (c) and Beijing-Guangzhou railway lines (d)
Fig.4  Fitting curves of corrosion monitoring data of 6005A Al-alloy (a) and the coating (b) under four working conditions
PositionAnR2
Running high-speed train0.018530.233590.98985
Qingdao0.150741.098550.98563
Wuhan0.156371.131430.98142
Wenchang0.071991.347160.98504
Table 1  Atmospheric corrosion kinetic parameters of 6005A Al-alloy exposed at different positions
PositionAty0R2
Running high-speed train-713.510.118510.22760.95401
Qingdao-262.380.615550.37370.99366
Wuhan-194.420.69830.347460.99126
Wenchang-79.68540.818270.396050.9906
Table 2  Dynamic fitting parameters of the coating with different thicknesses during exposure at different locations
1 Wang J, Ma Y S. Exploration and Practice of China's High-Speed EMU Development Model [M]. Beijing: China Railway Publishing House Co. LTD, 2020: 14
王军, 马云双. 中国高速动车组发展模式探索与实践 [M]. 北京: 中国铁道出版社有限公司, 2020: 14
2 Zhao F, Jin D, Li H Y. Accelerated corrosion behaviors of aluminum alloy 2A12 in simulated coastal industrial atmosphere environment [J]. Corros. Prot., 2021, 42: 19
赵菲, 靳东, 李红英. 模拟沿海工业大气环境中2A12铝合金的加速腐蚀行为 [J]. 腐蚀与防护, 2021, 42: 19
3 Cai G Y. Degradation mechanism and modification of polyurethanecoating and rapid evaluation on its failure [D]. Wuhan: Huazhong University of Science and Technology, 2018
蔡光义. 聚氨酯涂层的老化机制及改性与失效评价方法研究 [D]. 武汉: 华中科技大学, 2018
4 Cui X F, Tan X M, Wang D, et al. Assessment of aging performance of polyurethane coating for 7B04 al-alloy with an accelerated testing spectrum [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 74
崔晓飞, 谭晓明, 王德等. 铝合金表面聚氨酯涂层在加速实验条件下的老化机制及规律研究 [J]. 中国腐蚀与防护学报, 2018, 38: 74
5 Su X T, Chen K F. Accelerating factor modeling of ultraviolet radiation aging test of train surface coating [J]. Equip. Environ. Eng., 2020, 17(6): 39
宿兴涛, 陈凯锋. 列车表面涂层光老化试验加速因子建模研究 [J]. 装备环境工程, 2020, 17(6): 39
6 Etchepare P L, Samelor D, Vergnes H, et al. Barrier properties and hydrothermal aging of amorphous alumina coatings applied on pharmaceutical vials [J]. Surf. Coat. Technol., 2021, 425: 127711
7 Sivakumar P, Du S M, Selter M, et al. Long-term thermal aging of parylene conformal coating under high humidity and its effects on tin whisker mitigation [J]. Polym. Degrad. Stabil., 2021, 191: 109667
8 Gao J, Li C, Lv Z, et al. Correlation between the surface aging of acrylic polyurethane coatings and environmental factors [J]. Prog. Org. Coat., 2019, 132: 362
9 Zhao Q Y, Guo C, Niu K K, et al. Long-term corrosion behavior of the 7A85 aluminum alloy in an industrial-marine atmospheric environment [J]. J. Mater. Res. Technol., 2021, 12: 1350
10 Bai Z H, Huang Y H, Li X G, et al. Environmental corrosion in industrial-marine atmosphere at qingdao of 7050 Al-alloy anodized in boric-and sulfuric-acid electrolyte [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 580
白子恒, 黄运华, 李晓刚等. 硫硼酸阳极氧化处理的7050铝合金在工业海洋大气中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2016, 36: 580
11 Zhao Q C, Luo L Z, Li X F, et al. Corrosion behavior of 7A85 aluminum alloy in two typical atmospheric environments [J]. Equip. Environ. Eng., 2020, 17(7): 70
赵全成, 罗来正, 黎小锋等. 两种典型大气环境下7A85铝合金的腐蚀行为研究 [J]. 装备环境工程, 2020, 17(7): 70
12 Wang L, Dong C F, Zhang D W, et al. Effect of alloying elements on initial corrosion behavior of aluminum alloy in Bangkok, Thailand [J]. Acta Metall. Sin., 2020, 56: 119
王力, 董超芳, 张达威等. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响 [J]. 金属学报, 2020, 56: 119
13 Zhao W H, Wang H W, Cai G Y, et al. Localized corrosion and corrosion inhibitor of Al-alloy AA6061 beneath electrolyte layers [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 366
赵苇杭, 王浩伟, 蔡光义等. AA6061铝合金在含盐薄液膜下的局部腐蚀与缓蚀机理 [J]. 中国腐蚀与防护学报, 2017, 37: 366
14 Wu J, An J F, Sun X L, et al. Corrosion behavior of stainless steel welded joints in marine atmosphere environment [J]. Mater. Prot., 2019, 52(4): 14
吴军, 安江峰, 孙学利等. 高铁不锈钢焊接接头在海洋大气环境中的腐蚀行为 [J]. 材料保护, 2019, 52(4): 14
15 Lin C, Wang F P, Li X G. The progress of research methods on atmospheric corrosion [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 249
林翠, 王凤平, 李晓刚. 大气腐蚀研究方法进展 [J]. 中国腐蚀与防护学报, 2004, 24: 249
16 Wang X H, Wang M Q, Li B W, et al. Application of atmospheric corrosion monitoring technique for atmospheric corrosion of Al-alloys [J]. Corros Sci. Prot. Technol., 2018, 30: 671
汪笑鹤, 汪明球, 李博文等. 大气环境腐蚀检测技术在铝合金大气腐蚀研究中的应用 [J]. 腐蚀科学与防护技术, 2018, 30: 671
17 Dai W, Wang X Y, Zhang M, et al. Corrosion monitoring method of porous aluminum alloy plate hole edges based on piezoelectric sensors [J]. Sensors (Basel), 2019, 19: 1106
18 Yu J S, Wan S, Zhao P, et al. Advances of atmospheric corrosion on-line monitoring techniques for electric power grid [J]. Equip. Environ. Eng., 2020, 17(4): 27
于金山, 万闪, 赵鹏等. 高压电网大气腐蚀在线监测技术进展 [J]. 装备环境工程, 2020, 17(4): 27
19 Cai G Y, Wang H W, Jiang D, et al. Impedance sensor for the early failure diagnosis of organic coatings [J]. J. Coat. Technol. Res., 2018, 15: 1259
20 Zhang D P, Sun M M, Cao X K, et al. Progress in corrosion inhibitor evaluation and corrosion monitoring technology in oil recovery industries [J]. Surf. Technol., 2020, 49(11): 1
张德平, 孙苗苗, 曹祥康等. 油气工业缓蚀剂评价与腐蚀监测技术进展 [J]. 表面技术, 2020, 49(11): 1
21 Dong Z H, Guo X P, Wei F. Remote corrosion monitoring system based on GPRS/GSM network [A]. Kunming, 2004: 7
董泽华, 郭兴蓬, 魏丰. 基于GPRS/GSM网络的远程腐蚀监控系统 [A] 第十三届全国缓蚀剂学术讨论会论文集 [C]. 昆明, 2004: 7
22 Jia Y B, Gao H B, Qian Z H, et al. Research and application of on-line monitoring technology of offshore wind power equipment corrosion [J]. Dev. Appl. Mater., 2021, 36(3): 95
贾彦兵, 高宏飚, 钱正宏等. 海上风电设备腐蚀在线监测技术研究与应用 [J]. 材料开发与应用, 2021, 36(3): 95
23 Zhang K, Li D F, Wen B W, et al. Comparative research on corrosion behaviors of 7B04 aluminium alloy on the ocean-going ship platform and offshore platform [J]. Surf. Technol., 2021, 50: 405
[1] WENG Shuo, YU Jun, ZHAO Lihui, FENG Jinzhi, ZHENG Songlin. Effect of Corrosion Damage on Fatigue Behavior of AA7075-T651 Al-alloy[J]. 中国腐蚀与防护学报, 2022, 42(3): 486-492.
[2] LIU Xuanxuan, YU Jinshan, GAO Yan, ZHAO Peng, WANG Qiwei, DU Zhuoling, ZHANG Junxi. Effect of APTES Modified Montmorillonite on Protective Property of Hybrid Sol-gel Coating on Mg-alloy[J]. 中国腐蚀与防护学报, 2022, 42(3): 464-470.
[3] WANG Yongxin, WANG Yixuan, CHEN Chunlin, LI Xiang, HE Nankai, LI Jinlong. Preparation of Zr/[Al(Si)N/CrN] Coatings of Stratified Structure and Their Corrosion-wear Performance in Artificial Seawater[J]. 中国腐蚀与防护学报, 2022, 42(3): 345-357.
[4] HUANG Zhaoxin, ZHU Zhiping, ZHOU Pan, JIANG Yuankang, HE Mingpeng, WANG Zhenggang. Corrosion Characteristics of Propylene Glycol Antifreeze in Valve Cooling System of Converter Station[J]. 中国腐蚀与防护学报, 2022, 42(3): 471-478.
[5] YANG Yange, CAO Jingyi, WANG Xingqi, FANG Zhigang, YU Hongfei, YU Baoxing, WANG Fuhui. Design and Performance of Zr- and/or Ti-based Chemical Conversion Coatings for Light Alloys[J]. 中国腐蚀与防护学报, 2022, 42(3): 387-394.
[6] LI Ling, DU Xiran, QU Pinquan, LI Jiancheng, WANG Jinlong, GU Yan, ZHANG Jia, CHEN Minghui, WANG Fuhui. Effect of Vacuum Heat Treatment on Oxidation Behavior of Arc Ion Plated NiCoCrAlY Coatings[J]. 中国腐蚀与防护学报, 2022, 42(2): 243-248.
[7] WU Jiajie, WANG Yanli. Hot Corrosion and Protection of Structural Materials in Molten Salt Reactor[J]. 中国腐蚀与防护学报, 2022, 42(2): 193-199.
[8] WEN Jiaxin, ZHANG Xin, LIU Yunxia, ZHOU Yongfu, LIU Kejian. Preparation and Performance of Smart Coating Doped with Nanocontainers of BTA@MSNs-SO3H-PDDA for Anti-corrosion of Carbon Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 309-316.
[9] QIU Panpan, SHU Xiaoyong, HU Linli, YANG Tao, FANG Yuqing. Research Progress of Pt-modified Aluminide Coating on Nickel-base Superalloys[J]. 中国腐蚀与防护学报, 2022, 42(2): 186-192.
[10] LI Xujia, HUI Honghai, ZHAO Junwen, WU Guoqiang, DAI Guangze. Effect of MWCNTs Content on Corrosion Resistance of Chromium-free Zinc-aluminum Coatings[J]. 中国腐蚀与防护学报, 2022, 42(2): 324-330.
[11] LIU Shuhui, LIU Bin, XU Dawei, LIU Yu, CHEN Fanwei, LIU Siqi. Research Progress on Anti-corrosion Coatings of Layered Double Hydroxides[J]. 中国腐蚀与防护学报, 2022, 42(1): 16-24.
[12] LI Jianyong, DAI Dianyu, QIAN Chen, DIAO Shulei, LIU Jinshan, LU Tongxin, SUN Yong, XIAO Fengjuan. Corrosion Behavior of PANI Nanofiber/Modified GO/Waterborne Epoxy Composite Coating on Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(1): 156-162.
[13] CHEN Zhenning, YONG Xingyue, CHEN Xiaochun. Micro-defects in Micro-arc Oxidation Coatings on Mg-alloys[J]. 中国腐蚀与防护学报, 2022, 42(1): 1-8.
[14] GAO Haodong, CUI Yu, LIU Li, MENG Fandi, LIU Rui, ZHENG Hongpeng, WANG Fuhui. Influence of Simulated Deep Sea Pressured-flowing Seawater on Failure Behavior of Epoxy Glass Flake Coating[J]. 中国腐蚀与防护学报, 2022, 42(1): 39-50.
[15] LIU Jun, GENG Yongjuan, LI Shaochun, XU Ailing, HOU Dongshuai, LIU Ang, LANG Xiulu, CHEN Xu, LIU Guofeng. Protection Efficacy of TEOS/IBTS Coating on Microbial Fouling of Concrete in Marine Tidal Areas[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
No Suggested Reading articles found!