Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (3): 410-416    DOI: 10.11902/1005.4537.2021.223
Current Issue | Archive | Adv Search |
Corrosion Behavior of Enamel/aluminide Composite Coating in a Simulated High Temperature Marine Environment
CHENG Yuxian1(), CAO Chao2, JIANG Chengyang2, CHEN Minghui2, WANG Fuhui2
1.AECC Shenyang Liming Aero-Engine Co. Ltd. , Shenyang 110043, China
2.Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
Download:  HTML  PDF(5701KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The enamel/aluminide composite coating on Ni-based superalloy GH4169 is prepared by two-step process i.e, pack cementation and subsequent spray/fired enamel coating. The coating mainly consists of three layers: the outer layer of enamel coating (40 μm), and the middle layer of aluminide coating mainly composed of Ni2Al3 phase (~20 μm), and the inner layer of an interdiffusion zone of about 3 μm in thickness. The corrosion behavior of enamel/aluminide composite coating/GH4169, aluminide coating/GH4169 and blank GH4169 alloy respectively were investigated beneath NaCl deposits in atmosphere of oxygen flow carrying water vapor. The results show that the oxidation and chlorination of elements Fe and Cr in the aluminide coating and alloy can autocatalytically ocurr due to the presence of synergistic reaction of NaCl with water vapor, thereby the oxide scale on the surface is seriously damaged. The enamel coating could isolate the corrosive media such as NaCl and water vapor from the aluminide coating/GH4169, thus blocking the oxidation-chlorination autocatalytic reaction, thereby, the corrosion of the aluminide coating/alloy is retarded.

Key words:  Ni-based superalloy      aluminization      enamel      high temperature marine corrosion     
Received:  01 September 2021     
ZTFLH:  TG172  
Fund: Liaoning Xingliao Talents(XLYC1807256);BaiQianWan Talents Program of Liaoning Province and Shenyang Young Scientific and Technological Innovation Talents Program(RC190351)
Corresponding Authors:  CHENG Yuxian     E-mail:  leo100223@163.com
About author:  CHENG Yuxian, E-mail: leo100223@163.com

Cite this article: 

CHENG Yuxian, CAO Chao, JIANG Chengyang, CHEN Minghui, WANG Fuhui. Corrosion Behavior of Enamel/aluminide Composite Coating in a Simulated High Temperature Marine Environment. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 410-416.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.223     OR     https://www.jcscp.org/EN/Y2022/V42/I3/410

Fig.1  XRD patterns of aluminide and aluminide+enamel coatings
Fig.2  Cross-sectional morphologies of as-prepared alum-inide (a) and aluminide+enamel coatings (b)
Fig.3  Mass changes of three test samples during high temperature corrosion at 650 ℃
Fig.4  XRD patterns of three test samples after corrosion at 650 ℃ for 100 h
Fig.5  Surface morphologies of GH4169 alloy without (a) and with aluminide coating (b) and aluminide+enamel coating (c) after high temperature corrosion for 100 h
Fig.6  Cross-sectional morphologies of GH4169 alloy without (a) and with aluminide coating (b) and aluminide+enamel coating (c) after corrosion for 100 h
SampleAlCrFeNiNb
1#---2.82.618.21.2
2#34.00.50.68.5---
3#41.73.94.79.50.9
4#32.10.60.61.9---
Table 1  Chemical compositions of the red rectangular areas in Fig.6 (Atomic fraction / %)
1 Bu W X. The study on quantitative phase analysis method and application of GH169 alloy [D]. Harbin: Harbin University of Science and Technology
卜文学. GH169合金定量相分析方法及其应用的研究 [D]. 哈尔滨: 哈尔滨理工大学)
2 Greene G A, Finfrock C C. Oxidation of Inconel 718 in air at high temperatures [J]. Oxid. Met., 2001, 55: 505
3 Cui T, Wang J Q, Wang X X, et al. High temperature oxidation of superalloy GH4169 [J]. Corros. Sci. Prot. Technol., 2004, 16: 192
崔彤, 王介强, 王晓轩等. GH4169合金高温氧化特征 [J]. 腐蚀科学与防护技术, 2004, 16: 192
4 Saladi S, Menghani J, Prakash S. A study on the cyclic oxidation behavior of detonation-gun-sprayed Ni-5Al coatings on Inconel-718 at 900 ℃ [J]. J. Mater. Eng. Perform., 2014, 23: 4394
5 Saladi S, Menghani J, Prakash S. Hot corrosion behaviour of detonation-gun sprayed Cr3C2-NiCr coating on Inconel-718 in molten salt environment at 900 ℃ [J]. Trans. Indian Ins. Met., 2014, 67: 623
6 Koech P K, Wang C J. High-Temperature corrosion behaviour of aluminized-coated and uncoated alloy 718 under cyclic oxidation and corrosion in NaCl vapour at 750 ℃ [J]. Oxid. Met., 2018, 90: 713
7 Kumar S, Satapathy B, Pradhan D, et al. Effect of surface modification on the hot corrosion resistance of Inconel 718 at 700 ℃ [J]. Mater. Res. Express, 2019, 6: 086549
8 Yang S S, Yang L L, Chen M H, et al. Understanding of failure mechanisms of the oxide scales formed on nanocrystalline coatings with different Al content during cyclic oxidation [J]. Acta Mater., 2021, 205: 116576
9 Jiang C Y, Qian L Y, Feng M, et al. Benefits of Zr addition to oxidation resistance of a single-phase (Ni,Pt) Al coating at 1373 K [J]. J. Mater. Sci. Technol., 2019, 35: 1334
10 Jiang C Y, Yang Y F, Zhang Z Y, et al. A Zr-doped single-phase Pt-modified aluminide coating and the enhanced hot corrosion resistance [J]. Corros. Sci., 2018, 133: 406
11 Liao Y M, Zhang B, Chen M H, et al. Self-healing metal-enamel composite coating and its protection for TiAl alloy against oxidation under thermal shock in NaCl solution [J]. Corros. Sci., 2020, 167: 108526
12 Feng M, Chen M H, Yu Z D, et al. Comparative study of thermal shock behavior of the arc ion plating NiCrAlY and the enamel based composite coatings [J]. Acta Metall. Sin., 2017, 53: 1636 丰敏, 陈明辉, 余中狄等,多弧离子镀NiCrAlY涂层与搪瓷基复合涂层的抗热震行为对比研究 [J]. 金属学报. 2017, 53: 1636
13 Chen K, Chen M H, Yu Z D, et al. Simulating sulfuric acid dew point corrosion of enamels with different contents of silica [J]. Corros. Sci., 2017, 127: 201
14 Yang Y F, Jiang C Y, Bao Z B, et al. Effect of aluminisation characteristics on the microstructure of single phase β-(Ni,Pt) Al coating and the isothermal oxidation behaviour [J]. Corros. Sci., 2016, 106: 43
15 Yang Y F, Jiang C Y, Yao H R, et al. Preparation and enhanced oxidation performance of a Hf-doped single-phase Pt-modified aluminide coating [J]. Corros. Sci., 2016, 113: 17
16 Jiang C Y, Yang Y F, Zhang Z Y, et al. Preparation and enhanced hot corrosion resistance of a Zr-doped PtAl2+(Ni, Pt) Al dual-phase coating [J]. Acta Metall. Sin., 2018, 54: 581
蒋成洋, 阳颖飞, 张正义等. 一种Zr改性双相PtAl2+(Ni, Pt)Al涂层的制备及热腐蚀行为研究 [J]. 金属学报, 2018, 54: 581
17 Li M S. High Temperature Corrosion of Metal [M]. Beijing: Beijing Industry Press, 2001
李美栓. 金属的高温腐蚀 [M]. 北京: 北京工业出版社, 2001
18 Yang L L, Chen M H, Wang J L, et al. A duplex nanocrystalline coating for high-temperature applications on single-crystal superalloy [J]. Corros. Sci., 2016, 102: 72
19 Wang J L, Chen M H, Cheng Y X, et al. Hot corrosion of arc ion plating NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy [J]. Corros. Sci., 2017, 123: 27
20 Chen M H, Zhu S L, Shen M L, et al. Effect of NiCrAlY platelets inclusion on the mechanical and thermal shock properties of glass matrix composites [J]. Mater. Sci. Eng., 2011, 528A: 1360
21 Chen M H, Zhu S L, Wang F H. Strengthening mechanisms and fracture surface characteristics of silicate glass matrix composites with inclusion of alumina particles of different particle sizes [J]. Physica, 2013, 413B: 15
22 Chen K, Chen M H, Yi A H, et al. Thermal shock and sulfuric acid corrosion behavior of enamel-nano-Ni composite/enamel-nano-nickel composite coating [J]. Int. J. Appl. Glass Sci., 2020, 11: 784
23 Yu Z D, Chen M H, Chen K, et al. Corrosion of enamel with and without CaF2 in molten aluminum at 750 ℃ [J]. Corros. Sci., 2019, 148: 228
24 Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296: 280
25 Chen M H, Zhu S L, Wang F H. Crystallization behavior of SiO2-Al2O3-ZnO-CaO glass system at 1123-1273 K [J]. J. Am. Ceram. Soc., 2010, 93: 3230
26 Shu Y H, Wang F H, Wu W T. Corrosion behavior of Ti60 alloy coated with a solid NaCl deposit in O2 plus water vapor at 500~700 ℃ [J]. Oxid. Met., 1999, 52: 463
27 Wang F H, Geng S J, Zhu S L. Corrosion behavior of a sputtered K38G nanocrystalline coating with a solid NaCl deposit in wet oxygen at 600 to 700 ℃ [J]. Oxid. Met., 2002, 58: 185
28 Cao M, Liu L, Yu Z F, et al. Studies on the corrosion behavior of Fe-20Cr alloy in NaCl solution spray at 600 ℃ [J]. Corros. Sci., 2018, 133: 165
29 Xiong Y X, Zhu S L, Wang F H. Synergistic corrosion behavior of coated Ti60 alloys with NaCl deposit in moist air at elevated temperature [J]. Corros. Sci., 2008, 50(1): 15
30 Barin I. Thermochemical Data of Pure Substance [M]. 3rd ed. Weinheim, Germany: Wiley-VCH, 1995
[1] LI Fengjie,CHEN Minghui,ZHANG Zheming,WANG Shuo,WANG Fuhui. Preparation and Thermal Shock Behavior of a Metal-enamel High-temperature Protective Coating[J]. 中国腐蚀与防护学报, 2019, 39(5): 411-416.
[2] GUO Yong'an, LI Bosong, LAI Wanhui, GUO Jianting, ZHOU Lanzhang. OXIDATION BEHAVIOR OF Ni-BASED SUPERALLOY K444 AT 900℃ IN AIR DURING LONG TERM[J]. 中国腐蚀与防护学报, 2012, 32(4): 285-290.
[3] MA Fangrong, LI Jinxu, CHU Wuyang, ZHANG Wanling, YANG Dake. STUDY OF HYDROGEN DIFFUSION OF ENAMELLED STEEL SHEET[J]. 中国腐蚀与防护学报, 2010, 30(4): 269-272.
[4] . High Temperature Oxidation and Hot Corrosion Behavior of Enamel/Sputtered NiCrAlY Composite Coating[J]. 中国腐蚀与防护学报, 2005, 25(6): 344-350 .
[5] Zhong Han; Weiming Jiang. STUDY ON CORROSION BEHAVIOR OF ALUMINUM BRONZE IN SEA WATER PIPE LINE SYSTEM[J]. 中国腐蚀与防护学报, 2000, 20(3): 188-192 .
No Suggested Reading articles found!