Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (4): 655-661    DOI: 10.11902/1005.4537.2021.145
Current Issue | Archive | Adv Search |
Oxidation Behavior of Nickel-based Alloy Inconel617B in Supercritical Water at 700 ℃
ZHU Zhongliang1(), MA Chenhao1, LI Yuyang1, XIAO Bo1, YUAN Xiaohu2,3, WANG Shuo4, XU Hong1, ZHANG Naiqiang1
1.Key Laboratory of Power Station Energy Transfer, Conversion and System, Ministry of Education, North China Electric Power University, Beijing 102206, China
2.School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
3.State Key Laboratory of Long-Life High Temperature Materials, Dongfang Electric Corporation Dongfang Turbing Co. Ltd., Deyang 618000, China
4.State Key Laboratory of Efficient and Clean Coal-fired Utility Boilers, Harbin Boiler Company Limited, Harbin 150046, China
Download:  HTML  PDF(11436KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Oxidation behavior of nickel-based alloy Inconel617B in 700 ℃/25 MPa supercritical water was studied by means of electron balance, SEM, XRD, XPS and AFM. The results show that the oxidation kinetics of Inconel617B at 700 ℃ obeys regulation in between parabolic and straight-line law, the formed oxide scales are composed mainly of NiO, NiCr2O4 and Cr2O3, and a small amount of Ni(OH)2, CoO and TiO2 are also detected. The phase constituents of the formed oxide scales varied with oxidation time. The three-dimensional morphology shows that the growth of the oxide scale can be attributed to the outward diffusion of metal ions. The growth mechanism of the oxide scale of Inconel617B in supercritical water was further discussed.

Key words:  nickel-based alloy      oxidation      supercritical water      oxidation mechanism      oxide film     
Received:  25 June 2021     
ZTFLH:  TK245  
Fund: National Key R&D Program of China(2020YFF0218101);National Natural Science Foundation of China(52071140);Fundamental Research Funds for Central Universities(2020MS007)
Corresponding Authors:  ZHU Zhongliang     E-mail:  zhzl@ncepu.edu.cn
About author:  ZHU Zhongliang, E-mail: zhzl@ncepu.edu.cn

Cite this article: 

ZHU Zhongliang, MA Chenhao, LI Yuyang, XIAO Bo, YUAN Xiaohu, WANG Shuo, XU Hong, ZHANG Naiqiang. Oxidation Behavior of Nickel-based Alloy Inconel617B in Supercritical Water at 700 ℃. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 655-661.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.145     OR     https://www.jcscp.org/EN/Y2022/V42/I4/655

Fig.1  Mass changes of Inconel617B alloy during exposure in SCW at 700 °C
Fig.2  Surface morphologies of Inconel617B alloy after oxidation in SCW for 200 h (a), 600 h (b, c) and 1000 h (d)
Fig.3  EDS mappings of various elements on the surface of Inconel617B alloy after 200 h (a) and 600 h (b) exposure
PointNiCrTiCoFeMo
A28.4018.340.377.1500.18
B18.9319.880.615.0602.08
C7.8522.691.012.240.800.97
D21.4118.150.495.430.962.32
E4.0524.180.961.131.320.63
Table 1  EDS results of the contents of various elements at the points A~E marked in Fig.2 (atomic fraction / %)
Fig.4  XPS spectra of (a) Ni 2p, (b) Co 2p, (c) Cr 2p, (d) Co 2p and (e) O 1s on the surface of Inconel617B alloy after oxidation at 700 ℃ for different time
Fig.5  XRD patterns of Inconel617B alloy oxidized in SCW at 700 ℃ for different time
Fig.6  Cross-sectional and corresponding elemental depth profiles of Inconel617B alloy after oxidation in SCW for 1000 h
Fig.7  2D (a, c) and 3D (b, d) AFM surface topographies of Inconel617B alloy after oxidation in SCW at 700 °C for 200 h (a, b) and 1000 h (c, d)
1 Wang Q, Wang W L, Liu M, et al. Development and prospect of (ultra) supercritical coal-fired power generation technology [J]. Therm. Power Generat., 2021, 50(2): 1
王倩, 王卫良, 刘敏 等. 超 (超) 临界燃煤发电技术发展与展望 [J]. 热力发电, 2021, 50(2): 1
2 Fang X D, Liu X, Xu F H, et al. Oxidation behavior in supercritical water of domestic austenitic steel C-HRA-5 for uultra-supercritical power stations [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 266
方旭东, 刘晓, 徐芳泓 等. 超超临界电站国产奥氏体钢C-HRA-5在超临界水中的氧化特性 [J]. 中国腐蚀与防护学报, 2020, 40: 266
3 Liu X, Wang H, Zhu Z L, et al. Oxidation characteristics of austenitic heat-resistant steel HR3C and sanicro25 in supercritical water for power station [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 529
刘晓, 王海, 朱忠亮 等. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性 [J]. 中国腐蚀与防护学报, 2020, 40: 529
4 Liu R W, Xiao P, Zhong L, et al. Research progress of advanced 700 ℃ ultra-supercritical coal-fired power generation technology [J]. Therm. Power Generat., 2017, 46(9): 1
刘入维, 肖平, 钟犁 等. 700 ℃超超临界燃煤发电技术研究现状 [J]. 热力发电, 2017, 46(9): 1
5 Zhang Y P, Cai X Y, Huang S H. Materials in 700 ℃ advanced ultra-supercritical coal-fired units [J]. Electr. Power, 2012, 45(2): 16
张燕平, 蔡小燕, 黄树红. 700 ℃超超临界燃煤发电机组材料研发现状 [J]. 中国电力, 2012, 45(2): 16
6 Xu H, Deng B, Zhu Z L, et al. Oxidation characteristics of Haynes 282 nickel-based alloy in supercritical water at 600-700 ℃ [J]. Mater. Mech. Eng., 2018, 42(3): 1
徐鸿, 邓博, 朱忠亮 等. Haynes 282镍基合金在600~700 ℃超临界水中的氧化特性 [J]. 机械工程材料, 2018, 42(3): 1
7 Zhang Q, Tang R, Yin K J, et al. Corrosion behavior of Hastelloy C-276 in supercritical water [J]. Corros. Sci., 2009, 51: 2092
doi: 10.1016/j.corsci.2009.05.041
8 Tan L, Ren X, Sridharan K, et al. Corrosion behavior of Ni-base alloys for advanced high temperature water-cooled nuclear plants [J]. Corros. Sci., 2008, 50: 3056
doi: 10.1016/j.corsci.2008.08.024
9 Chang K H, Chen S M, Yeh T K, et al. Effect of dissolved oxygen content on the oxide structure of Alloy 625 in supercritical water environments at 700 ℃ [J]. Corros. Sci., 2014, 81: 21
doi: 10.1016/j.corsci.2013.11.034
10 Rodriguez D, Merwin A, Karmiol Z, et al. Surface chemistry and corrosion behavior of Inconel 625 and 718 in subcritical, supercritical, and ultrasupercritical water [J]. Appl. Surf. Sci., 2017, 404: 443
doi: 10.1016/j.apsusc.2017.01.119
11 Zhong X Y, Han E-H, Wu X Q. Corrosion behavior of Alloy 690 in aerated supercritical water [J]. Corros. Sci., 2013, 66: 369
doi: 10.1016/j.corsci.2012.10.001
12 Behnamian Y, Mostafaei A, Kohandehghan A, et al. A comparative study of oxide scales grown on stainless steel and nickel-based superalloys in ultra-high temperature supercritical water at 800 ℃ [J]. Corros. Sci., 2016, 106: 188
doi: 10.1016/j.corsci.2016.02.004
13 Kim D, Sah I, Lee H J, et al. Hydrogen effects on oxidation behaviors of Haynes 230 in high temperature steam environments [J]. Solid State Ionics, 2013, 243: 1
doi: 10.1016/j.ssi.2013.04.010
14 Gorman D M, Higginson R L, Du H, et al. Microstructural analysis of IN617 and IN625 oxidised in the presence of steam for use in ultra-supercritical power plant [J]. Oxid. Met., 2013, 79: 553
doi: 10.1007/s11085-012-9342-2
15 Xie D B, Zhou Y Y, Lu J T, et al. Effect of Cr content on oxidation of Ni-based alloy in supercritical water [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 358
谢冬柏, 周游宇, 鲁金涛 等. Cr对镍基合金在超临界水中氧化行为的影响研究 [J]. 中国腐蚀与防护学报, 2018, 38: 358
16 Liu Y Y, Zhu L H, Zhou R Y, et al. Effect of microstructure evolution on properties of Inconel617B alloy welded joint creep tested at 750 ℃ [J]. Heat Treat. Met., 2017, 42(5): 62
刘岩岩, 朱丽慧, 周任远 等. Inconel617B合金焊接接头750 ℃持久微观组织演变对性能的影响 [J]. 金属热处理, 2017, 42(5): 62
17 McIntyre N S, Rummery T E, Cook M G, et al. X‐ray photoelectron spectroscopic study of the aqueous oxidation of monel-400 [J]. J. Electrochem. Soc., 1976, 123: 1164
doi: 10.1149/1.2133027
18 Huang J B, Wu X Q, Han E-H. Electrochemical properties and growth mechanism of passive films on alloy 690 in high-temperature alkaline environments [J]. Corros. Sci., 2010, 52: 3444
doi: 10.1016/j.corsci.2010.06.016
19 Xue T, Wang X, Lee J M. Dual-template synthesis of Co(OH)2 with mesoporous nanowire structure and its application in supercapacitor [J]. J. Power Sources, 2012, 201: 382
doi: 10.1016/j.jpowsour.2011.10.138
20 Wang Y, Liu Y, Tang H P, et al. Oxidation behaviors of porous Haynes 214 alloy at high temperatures [J]. Mater. Charact., 2015, 107: 283
doi: 10.1016/j.matchar.2015.07.026
21 Reddy B M, Khan A, Yamada Y, et al. Structural characterization of CeO2-TiO2 and V2O5/CeO2-TiO2 catalysts by Raman and XPS techniques [J]. J. Phys. Chem. B, 2003, 107: 5162
doi: 10.1021/jp0344601
22 Machet A, Galtayries A, Zanna S, et al. XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy [J]. Electrochim. Acta, 2004, 49: 3957
doi: 10.1016/j.electacta.2004.04.032
23 Sennour M, Marchetti L, Martin F, et al. A detailed TEM and SEM study of Ni-base alloys oxide scales formed in primary conditions of pressurized water reactor [J]. J. Nucl. Mater., 2010, 402: 147
doi: 10.1016/j.jnucmat.2010.05.010
24 McIntyre N S, Zetaruk D G, Owen D. X-ray photoelectron studies of the aqueous oxidation of Inconel-600 alloy [J]. J. Electrochem. Soc., 1979, 126: 750
doi: 10.1149/1.2129132
25 Sun M C, Wu X Q, Zhang Z E, et al. Analyses of oxide films grown on Alloy 625 in oxidizing supercritical water [J]. J. Supercrit. Fluids, 2008, 47: 309
doi: 10.1016/j.supflu.2008.07.010
26 Chang K H, Huang J H, Yan C B, et al. Corrosion behavior of Alloy 625 in supercritical water environments [J]. Prog. Nucl. Energy, 2012, 57: 20
doi: 10.1016/j.pnucene.2011.12.015
27 Pérez-González F A, Garza-Montes-de Oca N F, Colás R. High temperature oxidation of the Haynes 282© nickel-based superalloy [J]. Oxid. Met., 2014, 82: 145
doi: 10.1007/s11085-014-9483-6
28 Haugsrud R. On the high-temperature oxidation of nickel [J]. Corros. Sci., 2003, 45: 211
doi: 10.1016/S0010-938X(02)00085-9
[1] TIAN Weiping, GUO Liangshuai, WANG Yuhang, ZHOU Peng, ZHANG Tao. Effect of Cu-/Ag-activation on Growth and Corrosion Resistance of Electroless Plated Ni-film on Plasma Electrolytic Oxidation Coating[J]. 中国腐蚀与防护学报, 2022, 42(4): 573-582.
[2] YU Shuaixian, WU Yajun, WU Haisheng, WU Liang, MA Yanlong, DENG Shengwei, SUN Lidong. Optimization of Titanate Modified Silane Coatings and Their Effect on Corrosion Resistance of 5056 Aluminum Foils[J]. 中国腐蚀与防护学报, 2022, 42(3): 378-386.
[3] LI Ling, DU Xiran, QU Pinquan, LI Jiancheng, WANG Jinlong, GU Yan, ZHANG Jia, CHEN Minghui, WANG Fuhui. Effect of Vacuum Heat Treatment on Oxidation Behavior of Arc Ion Plated NiCoCrAlY Coatings[J]. 中国腐蚀与防护学报, 2022, 42(2): 243-248.
[4] LIANG Taihe, ZHU Xuemei, ZHANG Zhenwei, WANG Xinjian, ZHANG Yansheng. Corrosion Performance of Transition Layer at Interface of Oxide Scale/substrate Formed on Austenitic Steel Fe32Mn7Cr3Al2Si During High Temperature Oxidation[J]. 中国腐蚀与防护学报, 2022, 42(2): 317-323.
[5] QIU Panpan, SHU Xiaoyong, HU Linli, YANG Tao, FANG Yuqing. Research Progress of Pt-modified Aluminide Coating on Nickel-base Superalloys[J]. 中国腐蚀与防护学报, 2022, 42(2): 186-192.
[6] JIANG Rong, ZHANG Yue, ZHANG Leicheng, GAO Xiguang, SONG Yingdong. Experimental Study of Cyclic Oxidation Behavior of Direct-sintered SiC[J]. 中国腐蚀与防护学报, 2022, 42(2): 249-257.
[7] CHEN Zhenning, YONG Xingyue, CHEN Xiaochun. Micro-defects in Micro-arc Oxidation Coatings on Mg-alloys[J]. 中国腐蚀与防护学报, 2022, 42(1): 1-8.
[8] YIN Xubao, LI Yuqiao, GAO Rongjie. Preparation of Superhydrophobic Surface on Copper Substrate and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[9] SHAO Yinhua, WANG Jinlong, ZHANG Wei, ZHANG Jia, LI Ling, DU Xiran, CHEN Minghui, ZHU Shenglong, WANG Fuhui. High Temperature Oxidation Behavior of a Heat Resistant Magnesium Alloy Mg-14Gd-2.3Zn-Zr[J]. 中国腐蚀与防护学报, 2022, 42(1): 73-78.
[10] XU Guifang, LI Yuan, LEI Yucheng, ZHU Qiang. Effect of Relative Flow Velocity on Corrosion Behavior of High Nitrogen Austenitic Stainless Steel in Liquid Lead-bismuth Eutectic Alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.
[11] ZHANG Jie, QU Jiyu, LU Jinling, LIU Qian, LUO Xingqi. Sulfidation Corrosion Behavior of Nickel-based Alloys (Incoloy800, 825 and 625) in Sub/supercritical Water[J]. 中国腐蚀与防护学报, 2021, 41(6): 892-898.
[12] YANG Sheng, ZHANG Huijie, XIANG Wuyuan, OUYANG Tao, XIAO Fen, ZHOU Hui. Effect of Post Surface Treatment of Micro-arc Oxidation Films/TC4 Ti-alloy on Their Morphology and Galvanic Corrosion Performance[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
[13] WANG Laibin, LIU Xiahe, WANG Mei, GAO Junjie. Research Status and Progress on Growth Kinetics of Trivalent Chromium-based Conversion Film[J]. 中国腐蚀与防护学报, 2021, 41(5): 571-578.
[14] CHEN Tuchun, XIANG Junhuai, JIANG Longfa, XIONG Jian, BAI Lingyun, XU Xunhu, XU Xincheng. High-temperature Corrosion Behavior of Q235 Steel in Oxidizing Atmosphere Containing Chlorine[J]. 中国腐蚀与防护学报, 2021, 41(4): 560-564.
[15] LI Ruitao, XIAO Bo, LIU Xiao, ZHU Zhongliang, CHENG Yi, LI Junwan, CAO Jieyu, DING Haimin, ZHANG Naiqiang. Corrosion Behavior of Low Alloy Heat-resistant Steel T23 in High-temperature Supercritical Carbon Dioxide[J]. 中国腐蚀与防护学报, 2021, 41(3): 327-334.
No Suggested Reading articles found!