|
|
Oxidation Behavior of Nickel-based Alloy Inconel617B in Supercritical Water at 700 ℃ |
ZHU Zhongliang1( ), MA Chenhao1, LI Yuyang1, XIAO Bo1, YUAN Xiaohu2,3, WANG Shuo4, XU Hong1, ZHANG Naiqiang1 |
1.Key Laboratory of Power Station Energy Transfer, Conversion and System, Ministry of Education, North China Electric Power University, Beijing 102206, China 2.School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China 3.State Key Laboratory of Long-Life High Temperature Materials, Dongfang Electric Corporation Dongfang Turbing Co. Ltd., Deyang 618000, China 4.State Key Laboratory of Efficient and Clean Coal-fired Utility Boilers, Harbin Boiler Company Limited, Harbin 150046, China |
|
|
Abstract Oxidation behavior of nickel-based alloy Inconel617B in 700 ℃/25 MPa supercritical water was studied by means of electron balance, SEM, XRD, XPS and AFM. The results show that the oxidation kinetics of Inconel617B at 700 ℃ obeys regulation in between parabolic and straight-line law, the formed oxide scales are composed mainly of NiO, NiCr2O4 and Cr2O3, and a small amount of Ni(OH)2, CoO and TiO2 are also detected. The phase constituents of the formed oxide scales varied with oxidation time. The three-dimensional morphology shows that the growth of the oxide scale can be attributed to the outward diffusion of metal ions. The growth mechanism of the oxide scale of Inconel617B in supercritical water was further discussed.
|
Received: 25 June 2021
|
|
Fund: National Key R&D Program of China(2020YFF0218101);National Natural Science Foundation of China(52071140);Fundamental Research Funds for Central Universities(2020MS007) |
Corresponding Authors:
ZHU Zhongliang
E-mail: zhzl@ncepu.edu.cn
|
About author: ZHU Zhongliang, E-mail: zhzl@ncepu.edu.cn
|
1 |
Wang Q, Wang W L, Liu M, et al. Development and prospect of (ultra) supercritical coal-fired power generation technology [J]. Therm. Power Generat., 2021, 50(2): 1
|
|
王倩, 王卫良, 刘敏 等. 超 (超) 临界燃煤发电技术发展与展望 [J]. 热力发电, 2021, 50(2): 1
|
2 |
Fang X D, Liu X, Xu F H, et al. Oxidation behavior in supercritical water of domestic austenitic steel C-HRA-5 for uultra-supercritical power stations [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 266
|
|
方旭东, 刘晓, 徐芳泓 等. 超超临界电站国产奥氏体钢C-HRA-5在超临界水中的氧化特性 [J]. 中国腐蚀与防护学报, 2020, 40: 266
|
3 |
Liu X, Wang H, Zhu Z L, et al. Oxidation characteristics of austenitic heat-resistant steel HR3C and sanicro25 in supercritical water for power station [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 529
|
|
刘晓, 王海, 朱忠亮 等. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性 [J]. 中国腐蚀与防护学报, 2020, 40: 529
|
4 |
Liu R W, Xiao P, Zhong L, et al. Research progress of advanced 700 ℃ ultra-supercritical coal-fired power generation technology [J]. Therm. Power Generat., 2017, 46(9): 1
|
|
刘入维, 肖平, 钟犁 等. 700 ℃超超临界燃煤发电技术研究现状 [J]. 热力发电, 2017, 46(9): 1
|
5 |
Zhang Y P, Cai X Y, Huang S H. Materials in 700 ℃ advanced ultra-supercritical coal-fired units [J]. Electr. Power, 2012, 45(2): 16
|
|
张燕平, 蔡小燕, 黄树红. 700 ℃超超临界燃煤发电机组材料研发现状 [J]. 中国电力, 2012, 45(2): 16
|
6 |
Xu H, Deng B, Zhu Z L, et al. Oxidation characteristics of Haynes 282 nickel-based alloy in supercritical water at 600-700 ℃ [J]. Mater. Mech. Eng., 2018, 42(3): 1
|
|
徐鸿, 邓博, 朱忠亮 等. Haynes 282镍基合金在600~700 ℃超临界水中的氧化特性 [J]. 机械工程材料, 2018, 42(3): 1
|
7 |
Zhang Q, Tang R, Yin K J, et al. Corrosion behavior of Hastelloy C-276 in supercritical water [J]. Corros. Sci., 2009, 51: 2092
doi: 10.1016/j.corsci.2009.05.041
|
8 |
Tan L, Ren X, Sridharan K, et al. Corrosion behavior of Ni-base alloys for advanced high temperature water-cooled nuclear plants [J]. Corros. Sci., 2008, 50: 3056
doi: 10.1016/j.corsci.2008.08.024
|
9 |
Chang K H, Chen S M, Yeh T K, et al. Effect of dissolved oxygen content on the oxide structure of Alloy 625 in supercritical water environments at 700 ℃ [J]. Corros. Sci., 2014, 81: 21
doi: 10.1016/j.corsci.2013.11.034
|
10 |
Rodriguez D, Merwin A, Karmiol Z, et al. Surface chemistry and corrosion behavior of Inconel 625 and 718 in subcritical, supercritical, and ultrasupercritical water [J]. Appl. Surf. Sci., 2017, 404: 443
doi: 10.1016/j.apsusc.2017.01.119
|
11 |
Zhong X Y, Han E-H, Wu X Q. Corrosion behavior of Alloy 690 in aerated supercritical water [J]. Corros. Sci., 2013, 66: 369
doi: 10.1016/j.corsci.2012.10.001
|
12 |
Behnamian Y, Mostafaei A, Kohandehghan A, et al. A comparative study of oxide scales grown on stainless steel and nickel-based superalloys in ultra-high temperature supercritical water at 800 ℃ [J]. Corros. Sci., 2016, 106: 188
doi: 10.1016/j.corsci.2016.02.004
|
13 |
Kim D, Sah I, Lee H J, et al. Hydrogen effects on oxidation behaviors of Haynes 230 in high temperature steam environments [J]. Solid State Ionics, 2013, 243: 1
doi: 10.1016/j.ssi.2013.04.010
|
14 |
Gorman D M, Higginson R L, Du H, et al. Microstructural analysis of IN617 and IN625 oxidised in the presence of steam for use in ultra-supercritical power plant [J]. Oxid. Met., 2013, 79: 553
doi: 10.1007/s11085-012-9342-2
|
15 |
Xie D B, Zhou Y Y, Lu J T, et al. Effect of Cr content on oxidation of Ni-based alloy in supercritical water [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 358
|
|
谢冬柏, 周游宇, 鲁金涛 等. Cr对镍基合金在超临界水中氧化行为的影响研究 [J]. 中国腐蚀与防护学报, 2018, 38: 358
|
16 |
Liu Y Y, Zhu L H, Zhou R Y, et al. Effect of microstructure evolution on properties of Inconel617B alloy welded joint creep tested at 750 ℃ [J]. Heat Treat. Met., 2017, 42(5): 62
|
|
刘岩岩, 朱丽慧, 周任远 等. Inconel617B合金焊接接头750 ℃持久微观组织演变对性能的影响 [J]. 金属热处理, 2017, 42(5): 62
|
17 |
McIntyre N S, Rummery T E, Cook M G, et al. X‐ray photoelectron spectroscopic study of the aqueous oxidation of monel-400 [J]. J. Electrochem. Soc., 1976, 123: 1164
doi: 10.1149/1.2133027
|
18 |
Huang J B, Wu X Q, Han E-H. Electrochemical properties and growth mechanism of passive films on alloy 690 in high-temperature alkaline environments [J]. Corros. Sci., 2010, 52: 3444
doi: 10.1016/j.corsci.2010.06.016
|
19 |
Xue T, Wang X, Lee J M. Dual-template synthesis of Co(OH)2 with mesoporous nanowire structure and its application in supercapacitor [J]. J. Power Sources, 2012, 201: 382
doi: 10.1016/j.jpowsour.2011.10.138
|
20 |
Wang Y, Liu Y, Tang H P, et al. Oxidation behaviors of porous Haynes 214 alloy at high temperatures [J]. Mater. Charact., 2015, 107: 283
doi: 10.1016/j.matchar.2015.07.026
|
21 |
Reddy B M, Khan A, Yamada Y, et al. Structural characterization of CeO2-TiO2 and V2O5/CeO2-TiO2 catalysts by Raman and XPS techniques [J]. J. Phys. Chem. B, 2003, 107: 5162
doi: 10.1021/jp0344601
|
22 |
Machet A, Galtayries A, Zanna S, et al. XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy [J]. Electrochim. Acta, 2004, 49: 3957
doi: 10.1016/j.electacta.2004.04.032
|
23 |
Sennour M, Marchetti L, Martin F, et al. A detailed TEM and SEM study of Ni-base alloys oxide scales formed in primary conditions of pressurized water reactor [J]. J. Nucl. Mater., 2010, 402: 147
doi: 10.1016/j.jnucmat.2010.05.010
|
24 |
McIntyre N S, Zetaruk D G, Owen D. X-ray photoelectron studies of the aqueous oxidation of Inconel-600 alloy [J]. J. Electrochem. Soc., 1979, 126: 750
doi: 10.1149/1.2129132
|
25 |
Sun M C, Wu X Q, Zhang Z E, et al. Analyses of oxide films grown on Alloy 625 in oxidizing supercritical water [J]. J. Supercrit. Fluids, 2008, 47: 309
doi: 10.1016/j.supflu.2008.07.010
|
26 |
Chang K H, Huang J H, Yan C B, et al. Corrosion behavior of Alloy 625 in supercritical water environments [J]. Prog. Nucl. Energy, 2012, 57: 20
doi: 10.1016/j.pnucene.2011.12.015
|
27 |
Pérez-González F A, Garza-Montes-de Oca N F, Colás R. High temperature oxidation of the Haynes 282© nickel-based superalloy [J]. Oxid. Met., 2014, 82: 145
doi: 10.1007/s11085-014-9483-6
|
28 |
Haugsrud R. On the high-temperature oxidation of nickel [J]. Corros. Sci., 2003, 45: 211
doi: 10.1016/S0010-938X(02)00085-9
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|