Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (2): 175-182    DOI: 10.11902/1005.4537.2016.136
Orginal Article Current Issue | Archive | Adv Search |
Effect of Moistened Electrical Insulation on Galvanic Corrosion Behavior of Dissimilar Metals
Xin ZHAO1,Yulong HU1(),Fu DONG1,Xiaodong ZHANG2,Zhiqiao WANG1
1 College of Science, Naval University of Engineering, Wuhan 430033, China
2 Office of Research & Development, Naval University of Engineering, Wuhan 430033, China;
Download:  HTML  PDF(1136KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of moistened electrical insulation on galvanic corrosion behavior of dissimilar metals was investigated with a simulated galvanic corrosion setup, which consisted of a cell containing 3%NaCl solution with hull steel and cupronickel as electrodes and then by series connecting resistance elements or moistened insulation materials into the circuit. The results showed that through moistening the insulation material can be transformed into electrical conducting material. The resistance of moistened insulation material (Rm) may involve ionic resistance (Ri) and electrical resistance (Re), which are produced respectively by ionic conducting and electrical conducting. The corrosion behavior of the hull steel for the couple steel/cupronickel beneath a moistened insulation material may relate to the term Re. When Re is not higher than 1 kΩ, the galvanic current of the couple connected with a resistance element of a moistened insulation material may higher than that of the short-circuited couple, and the corrosion rates of hull steel of the couples connected with resistance elements may higher than that the short-circuited couple. When Re is higher than 1 kΩ, the galvanic currents of the couples connected with resistance elements decreased with the increase of Re, whilst the corrosion rate of the hull steel of the couples connected with resistance elements decreased with the increase of Re. The conduction of the moistened insulation material related to the nature of insulation material, the key to prevent galvanic corrosion of couple hull steel/cupronickel is the appropriate selection of insulation material.

Key words:  galvanic corrosion      treatment of electrical insulation      moistened insulation material      electrical resistance     
Received:  31 August 2016     

Cite this article: 

Xin ZHAO,Yulong HU,Fu DONG,Xiaodong ZHANG,Zhiqiao WANG. Effect of Moistened Electrical Insulation on Galvanic Corrosion Behavior of Dissimilar Metals. Journal of Chinese Society for Corrosion and protection, 2017, 37(2): 175-182.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.136     OR     https://www.jcscp.org/EN/Y2017/V37/I2/175

Material C Si Mn S P Ni Cr Pb Zn Cu Fe
Hull steel ≤0.11 0.5~0.8 0.6~0.12 ≤0.015 ≤0.025 0.5~0.8 0.6~0.9 --- --- 0.4~0.6 Bal.
B10 <0.010 --- ≤0.789 <0.005 --- ≤10.73 --- <0.010 ≤0.029 Bal. ≤1.74
Table 1  Chemical compositions of low-alloy high strength steel (hull steel) and B10 alloy (mass fraction / %)
Fig.1  Schematic outline of resistance measurement ofmoistened insulation materials
Fig.2  Schematic outline of galvanic corrosion experiment device
Fig.3  Variations of water absorption rates of three insulation materials
Fig.4  Changes of resistances of three moistened insulationmaterials (Rm)
Fig.5  Changes of corrosion potentials of the couples containing series resistors: (a) hull steel, (b) B10 alloy
Fig.6  Potential difference (?E) of B10-hull steel couple as a function of series resistance
Fig.7  Changes of galvanic currents (Ig) of the couples containing different series resistors with time: (a) R≥1 kΩ, (b) R<1 kΩ
Fig.8  Stable galvanic current vs series resistance
Fig.9  EIS of hull steel in the couples containing series resistors after immersion for 48 h: (a) R≥1 kΩ, (b)R<1 kΩ
R / Ω ?E / mV Rp of hull steel / Ωcm2
0 0 467.2
200 29 500.4
500 34 475.0
1000 49 589.5
2000 120 663.5
10000 252 950.6
Table 2  Variations of potential difference (?E) of the couple and fitted polarization resistance (Rp) of hull steel with series resistance (R)
Fig.10  Changes of corrosion potentials of the couples containing moistened insulation materials with time: (a) hull steel, (b) B10
Fig.11  Changes of galvanic currents (Ig) of the couples containing moistened insulation materials with time
Fig.12  Equivalent circuit model of moistened insulation material
Fig.13  EIS of hull steel of the couples containing moistened insulation materials after immersion for 48 h
Condition ?E / mV Rp of hull steel / Ωcm2
Open circuit 350 1754
Series connection J1 247 765.2
with insulation J2 263 897.7
material J3 417 1454
Table 3  Potential differences (?E) of the couples containing moistened insulation materials and fitted polarization resistances (Rp) of hull steel
[1] Hasan B O.Galvanic corrosion of carbon steel-brass couple in chloride containing water and the effect of different parameters[J]. J. Pet. Sci. Eng., 2014, 124: 137
[2] Yoo J D, Ogle K, Volovitch P.The effect of synthetic zinc corrosion products on corrosion of electrogalvanized steel. II. Zinc reactivity and galvanic coupling zinc/steel in presence of zinc corrosion products[J]. Corros. Sci., 2014, 83: 32
[3] Liu J H, Wu H, Li S M, et al.Effect of surface treatments on galvanic corrosion behavior of titanium alloy TC2 coupled with aluminum alloys and steels[J]. Corros. Sci. Prot. Technol., 2003, 15: 13
[3] (刘建华, 吴昊, 李松梅等. 表面处理对TC2钛合金电偶腐蚀的影响[J]. 腐蚀科学与防护技术, 2003, 15: 13)
[4] Jin B, Shen W J.Electrical insulative technology of seawater pipe system on vessels[J]. Mech. Electr. Equip., 2006, 23(5): 28
[4] (金蓓, 沈伟杰. 舰船海水管系电绝缘技术[J]. 机电设备, 2006, 23(5): 28)
[5] Sykes J M, Xu Y.Electrochemical studies of galvanic action beneath organic coatings[J]. Prog. Org. Coat., 2012, 74: 320
[6] Santo T F A, Vasconcelos G C, de Souza W A, et al. Suitability of carbon fiber-reinforced polymers as power cable cores: Galvanic corrosion and thermal stability evaluation[J]. Mater. Des., 2015, 65: 780
[7] Schneider M, Kremmer K, L?mmel C, et al.Galvanic corrosion of metal/ceramic coupling[J]. Corros. Sci., 2014, 80: 191
[8] Gillen K T, Bernstein R, Clough R L, et al.Lifetime predictions for semi-crystalline cable insulation materials: I. Mechanical properties and oxygen consumption measurements on EPR materials[J]. Polym. Degrad. Stabil., 2006, 91: 2146
[9] Wang H Q.Effects of temperature and humidity on embedded components PCB insulating material[J]. Sci. Technol. Eng., 2013, 13: 4941
[9] (王怀群. 湿度对嵌入元器件印制板绝缘材料的影响[J]. 科学技术与工程, 2013, 13: 4941)
[10] Fofana I, Hemmatjou H, Farzaneh M.Low temperature and moisture effects on polarization and depolarization currents of oil-paper insulation[J]. Electr. Power Syst. Res., 2010, 80: 91
[11] Gebhard A, Bayerl T, Schlarb A K, et al.Increased wear of aqueous lubricated short carbon fiber reinforced polyetheretherketone (PEEK/SCF) composites due to galvanic fiber corrosion[J]. Wear, 2010, 268: 871
[12] Chen S H.Application of electric at insulation technology for sea water pipes[J]. GSI Shipbuild. Technol., 2004, (4): 37
[12] (陈世红. 海水管系电绝缘技术的应用[J]. 广船科技, 2004, (4): 37)
[13] Si W H.An investigation on of galvanic corrosion between exhaust system of titanium alloy and hull steel[J]. Dev. Appl. Mater., 2013, 28(2): 34
[13] (司卫华. 钛合金与钢的电偶腐蚀行为研究[J]. 材料开发与应用, 2013, 28(2): 34)
[14] Zhang G A, Yu N, Yang L Y, et al.Galvanic corrosion behavior of deposit-covered and uncovered carbon steel[J]. Corros. Sci., 2014, 86: 202
[15] Sun B K, Li N, Du M, et al.Galvanic corrosion and electric insulation between Cu-Ni alloy B10 and Tup copper[J]. Corros. Prot., 2010, 31: 544
[15] (孙保库, 李宁, 杜敏等. B10铜镍合金与Tup紫铜的电偶腐蚀及电绝缘[J]. 腐蚀与防护, 2010, 31: 544)
[16] Zhao J K, Ouyang B H, Zhao X T, et al.Review of influence of water-tree on microstructure and properties of XLPE cable insulation material[J]. Insul. Mater., 2010, 43(5): 50
[16] (赵健康, 欧阳本红, 赵学童等. 水树对XLPE电缆绝缘材料性能和微观结构影响的研究进展[J]. 绝缘材料, 2010, 43(5): 50)
[17] Liao R J, Zhou Z, Hao J, et al.Space charge characteristics of oil immersed paper under moisture and temperature effect[J]. High Volt. Eng., 2012, 38: 2647
[17] (廖瑞金, 周之, 郝建等. 水分和温度联合作用时油浸绝缘纸空间电荷特性[J]. 高电压技术, 2012, 38: 2647)
[18] Radu I.Electric field calculation and the influence of water trees on insulation breakdown in needle-plane geometry[J]. J. Electrost., 2004, 60: 49
[19] Zhou L R, Wu G N, Luo Y.Injection and conduction mechanisms of charge carriers in insulators[J] J. Mater. Sci. Eng., 2010, 28: 102
[19] (周力任, 吴广宁, 罗杨. 绝缘介质中载流子注入与传导的机理[J]. 材料科学与工程学报, 2010, 28: 102)
[20] Torkaman H, Karimi F.Measurement variations of insulation resistance/polarization index during utilizing time in HV electrical machines-A survey[J]. Measurement, 2015, 59: 21
[1] DING Qingmiao, QIN Yongxiang, CUI Yanyu. Galvanic Corrosion of Aircraft Components in Atmospheric Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[2] YI Hongwei, HU Huihui, CHEN Changfeng, JIA Xiaolan, HU Lihua. Corrosion Behavior and Corrosion Inhibition of Dissimilar Metal Welds for X65 Steel in CO2-containing Environment[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[3] BAI Miaomiao, BAI Ziheng, JIANG Li, ZHANG Dongjiu, YAO Qiong, WEI Dan, DONG Chaofang, XIAO Kui. Corrosion Behavior of H62 Brass Alloy/TC4 Titanium Alloy Welded Specimens[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[4] HUANG Chen,HUANG Feng,ZHANG Yu,LIU Haixia,LIU Jing. Galvanic Corrosion Behavior for Weld Joint of High Strength Weathering Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 527-535.
[5] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[6] Zhenhua WANG, Yang BAI, Xiao MA, Shaohua XING. Numerical Simulation of Galvanic Corrosion for Couple of Ti-alloy with Cu-alloy in Seawaters[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[7] Yanjie LIU,Zhenyao WANG,Binbin WANG,Yan CAO,Yang HUO,Wei KE. Mechanism of Galvanic Corrosion of Coupled 2024 Al-alloy and 316L Stainless Steel Beneath a Thin Electrolyte Film Studied by Real-time Monitoring Technologies[J]. 中国腐蚀与防护学报, 2017, 37(3): 261-266.
[8] Qiang WEI,Moucheng LI,Jianian SHEN. Galvanic Corrosion Behavior of Two Stainless Steels in Simulated Muffler Environments[J]. 中国腐蚀与防护学报, 2015, 35(3): 233-238.
[9] ZHAO Xiaohong, GUO Quanzhong, DU Keqin, GUO Xinghua, WANG Yong. Galvanic Corrosion Behavior of Couples of Hot Rolled Steel SS400 and Cold Rolled Steel ST12 with Two Coatings[J]. 中国腐蚀与防护学报, 2015, 35(1): 86-90.
[10] XU Hongyan,LI Zhiyong. Galvanic Corrosion of AZ91D Magnesium Alloy[J]. 中国腐蚀与防护学报, 2013, 33(4): 298-305.
[11] WAN Li,DU Wei,LI Jiajia,DING Yi,CHEN Burong. Inhibition Effects of Odtadecanethiol Self-assembled Monolayers for Bronze-silver Galvanic Corrosion[J]. 中国腐蚀与防护学报, 2013, 33(3): 245-250.
[12] PEI Hezhong, YIN Zuosheng, ZHANG Guoliang, LIU Yuanyong. COMPARATIVE RESEARCH OF GALVANIC CORROSION OF 2024 AND 2124 ALUMINUM ALLOY[J]. 中国腐蚀与防护学报, 2012, 32(2): 133-136.
[13] LU Xiaofeng, ZHU Xiaolei, LING Xiang. A NOVEL MODEL FOR PREDICTING FLOW ACCELERATED CORROSION RATE IN REDUCER[J]. 中国腐蚀与防护学报, 2011, 31(6): 431-435.
[14] WANG Chunli, WU Jianhua, LI Qingfen. RECENT ADVANCES AND PROSPECT OF GALVANIC CORROSION IN MARINE ENVIRONMENT[J]. 中国腐蚀与防护学报, 2010, 30(5): 416-420.
[15] . Study on corrosion mechanism of carbon steel induced by Galvanic coupling in inhibitor solution[J]. 中国腐蚀与防护学报, 2008, 28(2): 90-94 .
No Suggested Reading articles found!