Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (6): 804-810    DOI: 10.11902/1005.4537.2020.232
Current Issue | Archive | Adv Search |
Effect of Nitric Acid Passivation on Critical Cl- Concentration for Corrosion of 304 Stainless Steel in Simulated Concrete Pore Solution
AN Yiqiang, WANG Xin, CUI Zhongyu()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Download:  HTML  PDF(3137KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion resistance of 304 stainless steel passivated by nitric acid in simulated concrete pore solutions was studied through the polarization curves, electrochemical impedance spectroscopy (EIS) and Mott-Schottky measurement. The results indicate that the critical Cl- concentration for the corrosion of 304 stainless steel in the simulated concrete pore solution was increased after nitric acid passivation. The bare steel and the steel subjected to passivation treatment for 0.5, 2 and 24 h presented different range of critical chloride ion concentrations, namely 0.05~0.1, 4~5, 2~4 and 1~2 mol/L, respectively. The Mott-Schottky test results show that the nitric acid passivation treatment reduces the carrier density of the passivation film and increases the stability of the film. The EIS measurement by potentiostatic polarization is suitable for detecting the critical Cl- concentration.

Key words:  304 stainless steel      nitric acid passivation      concrete pore solution      pitting corrosion      critical Cl- concentration     
Received:  12 November 2020     
ZTFLH:  TG172  
Fund: Fundamental Research Funds for the Central Universities(201762008)
Corresponding Authors:  CUI Zhongyu     E-mail:  cuizhongyu@ouc.edu.cn
About author:  CUI Zhongyu, E-mail: cuizhongyu@ouc.edu.cn

Cite this article: 

AN Yiqiang, WANG Xin, CUI Zhongyu. Effect of Nitric Acid Passivation on Critical Cl- Concentration for Corrosion of 304 Stainless Steel in Simulated Concrete Pore Solution. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 804-810.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.232     OR     https://www.jcscp.org/EN/Y2021/V41/I6/804

Fig.1  Potentiodynamic polarization curves of 304 stainless steel in simulated concrete pore fluid containing Cl- after passivation in nitric acid solution for 0 h (a), 0.5 h (b), 2 h (c) and 24 h (d)
Fig.2  Pitting potential vs critical chloride concentration curves calculated from the potentiodynamic polarization curves of 304 stainless steel
Fig.3  EIS results of 304 stainless steel after passivation in nitric acid for 0 h (a), 0.5 h (b), 2 h (c), 24 h (d) and then polarization at a constant potential of 550 mV
Fig.4  Nyquist (a) and Bode (b) plots of 304 stainless steel after passivation for different time in 0.5 mol/L NaCl solution
Time / hRs / Ω·cm2Qf / 10-5 Ω-1·cm-2·snnRf / 105 Ω·cm2
06.85.30.921.1
0.56.13.70.937.7
27.93.30.814.0
247.59.40.841.9
Table 1  Fitting results of EIS passivated 304 stainless steel after passivation for different time in 0.5 mol/L NaCl solution
Fig.5  Mott-Schottky plots of 304 stainless steel in Cl--free simulated concrete pore solution after passivation for different time
Passivation time / hSlopeND / 1020 cm-3EFB / VSCE
023.73.8-0.49
0.580.21.1-0.48
240.32.2-0.51
2424.03.8-0.47
Table 2  Calculated characteristic parameters for n-type semiconductors from Mott-Schottky plots
1 Bertolini L, Bolzoni F, Pastore T, et al. Behaviour of stainless steel in simulated concrete pore solution [J]. Br. Corros. J., 1996, 31: 218
2 Wu X, Sun Y T, Liu Y Y, et al. The critical pitting chloride concentration of various stainless steels measured by an electrochemical method [J]. J. Electrochem. Soc., 2018, 165: C939
3 Baddoo N R. Stainless steel in construction: a review of research, applications, challenges and opportunities [J]. J. Const. Steel Res., 2008, 64: 1199
4 Kouřil M, Novák P, Bojko M. Threshold chloride concentration for stainless steels activation in concrete pore solutions [J]. Cem. Concr. Res., 2010, 40: 431
5 Moser R D, Singh P M, Kahn L F, et al. Chloride-induced corrosion resistance of high-strength stainless steels in simulated alkaline and carbonated concrete pore solutions [J]. Corros. Sci., 2012, 57: 241
6 Thangavel K, Rengaswamy N S. Relationship between chloride/hydroxide ratio and corrosion rate of steel in concrete [J]. Cem. Concr. Compos., 1998, 20: 283
7 Hurley M F, Scully J R. Threshold chloride concentrations of selected corrosion-resistant rebar materials compared to carbon steel [J]. Corrosion, 2006, 62: 892
8 Elsener B, Addari D, Coray S, et al. Stainless steel reinforcing bars -reason for their high pitting corrosion resistance [J]. Mater. Corros., 2011, 62: 111
9 Wang L W, Tian H Y, Gao H, et al. Electrochemical and XPS analytical investigation of the accelerative effect of bicarbonate/carbonate ions on AISI 304 in alkaline environment [J]. Appl. Surf. Sci., 2019, 492: 792
10 Zheng Z B, Zheng Y G. Effects of surface treatments on the corrosion and erosion-corrosion of 304 stainless steel in 3.5% NaCl solution [J]. Corros. Sci., 2016, 112: 657
11 Noh J S, Laycock N J, Gao W, et al. Effects of nitric acid passivation on the pitting resistance of 316 stainless steel [J]. Corros. Sci., 2000, 42: 2069
12 Wallinder D, Pan J, Leygraf C, et al. EIS and XPS study of surface modification of 316LVM stainless steel after passivation [J]. Corros. Sci., 1998, 41: 275
13 Hultquist G, Leygraf C. Surface composition of a type 316 stainless steel related to initiation of crevice corrosion [J]. Corrosion, 1980, 36: 126
14 Barbosa M A, Garrido A, Campilho A, et al. The surface composition and corrosion behaviour of AISI 304 stainless steel after immersion in 20% HNO3 solution [J]. Corros. Sci., 1991, 32: 179
15 Barbosa M A. The pitting resistance of AISI 316 stainless steel passivated in diluted nitric acid [J]. Corros. Sci., 1983, 23: 1293
16 Lin Y H, Du R G, Hu R G, et al. A correlation study of corrosion resistance and semiconductor properties for the electrochemically modified passive film of stainless steel [J]. Acta Phys. -Chim. Sin., 2005, 21: 740
林玉华, 杜荣归, 胡融刚等. 不锈钢钝化膜耐蚀性与半导体特性的关联研究 [J]. 物理化学学报, 2005, 21: 740
17 Kong X G, Gao Z M. Rare earth elements effect on the electrochemical behavior of the passive film formed on stainless steel [A]. Abstracts of 2014 National Symposium on Corrosion Electrochemistry and Testing Methods [C]. Harbin, 2014: 1
孔宪刚, 高志明. 稀土对不锈钢钝化膜的耐蚀性与半导体特性的影响 [A]. 2014年全国腐蚀电化学及测试方法学术交流会摘要集 [C]. 哈尔滨, 2014: 1
18 Padhy N, Paul R, Mudali U K, et al. Morphological and compositional analysis of passive film on austenitic stainless steel in nitric acid medium [J]. Appl. Surf. Sci., 2011, 257: 5088
19 Moreno M, Morris W, Alvarez M G, et al. Corrosion of reinforcing steel in simulated concrete pore solutions: effect of carbonation and chloride content [J]. Corros. Sci., 2004, 46: 2681
20 Miao W H, Hu W B, Gao Z M, et al. Corrosion behavior of 304SS in simulated pore solution of concrete for use in marine environment [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 543
苗伟行, 胡文彬, 高志明等. 304不锈钢在海洋环境混凝土模拟液中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2016, 36: 543
21 Angst U, Elsener B, Larsen C K, et al. Critical chloride content in reinforced concrete—A review [J]. Cem. Concr. Res., 2009, 39: 1122
22 Kocijan A, Merl D K, Jenko M. The corrosion behaviour of austenitic and duplex stainless steels in artificial saliva with the addition of fluoride [J]. Corros. Sci., 2011, 53: 776
23 Hakiki N E, Belo M D C, Simões A M P, et al. Semiconducting properties of passive films formed on stainless steels: Influence of the alloying elements [J]. J. Electrochem. Soc., 1998, 145: 3821
24 Zheng Z J, Gao Y, Gui Y, et al. Studying the fine microstructure of the passive film on nanocrystalline 304 stainless steel by EIS, XPS, and AFM [J]. J. Solid State Electrochem., 2014, 18: 2201
25 Feng Z C, Cheng X Q, Dong C F, et al. Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy [J]. Corros. Sci., 2010, 52: 3646
26 Sunseri C, Piazza S, Quarto F D. Photocurrent spectroscopic investigations of passive films on chromium [J]. J. Electrochem. Soc., 1990, 137: 2411
27 Yassar R S, Scudiero L, Alamr A S, et al. Microstructure–mechanical and chemical behavior relationships in passive thin films [J]. Thin Solid Films, 2010, 518: 2757
28 Song G L, Cao C N, Lin H C. The stability of the transpassive film on 304 stainless steel with post-treatment [J]. Corros. Sci., 1994, 36: 165
29 Rossi A, Elsener B. Role of the interface oxide film/alloy composition and stability of stainless steels [J]. Mater. Corros., 2012, 63: 1188
30 Macdonald D D, Urquidi-Macdonald M. Theory of steady‐state passive films [J]. J. Electrochem. Soc., 1990, 137: 2395
[1] ZHENG Shien, PAN Yingjun, ZHANG Heng, KE Deqing, YANG Ling, ZHU Xingyu. Corrosion Resistance of Boride Cladding Layer on Surface of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[2] ZHANG Xin, LIN Muyan, YANG Guangheng, WANG Zehua, SHAO Jia, ZHOU Zehua. Effect of Er on Corrosion Behavior of Marine Engineering 5052 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[3] GAI Xipeng, LEI Li, CUI Zhongyu. Pitting Corrosion Behavior of 304 Stainless Steel in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[4] LIU Xinyi, ZHAO Yazhou, ZHANG Huan, CHEN Li. Effect of Chloride Concentration in a Simulated Concrete Pore Solution on Metastable Pitting of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[5] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[7] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[8] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[9] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[10] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[11] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[12] LUO Hong,GAO Shujun,XIAO Kui,DONG Chaofang,LI Xiaogang. Effect of Magnetron Sputtering Process Parameters on CrN Films on 304 Stainless Steel and TheirCorrosion Behavior[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[13] Yu LI,Lei GUAN,Guan WANG,Bo ZHANG,Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[14] Wenshan PENG,Jian HOU,Kangkang DING,Weimin GUO,Ri QIU,Likun XU. Corrosion Behavior of 304 Stainless Steel in Deep Sea Environment[J]. 中国腐蚀与防护学报, 2019, 39(2): 145-151.
[15] Tong LIAO,Zheng MA,Leilei LI,Xiumin MA,Xiutong WANG,Baorong HOU. Light-generated Cathodic Protection Properties of Fe2O3/TiO2 Nanocomposites for 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
No Suggested Reading articles found!