Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (6): 819-827    DOI: 10.11902/1005.4537.2020.218
Current Issue | Archive | Adv Search |
Synergistic Inhibition Effect of Walnut Green Husk Extract and Potassium Iodide on Corrosion of Steel in Citric Acid Solution
WANG Lizi, HUANG Miao, LI Xianghong()
College of Chemical Engineering, Southwest Forestry University, Kunming 650224, China
Download:  HTML  PDF(8147KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Walnut green husk extract (WGHE) was obtained from the raw materials of forestry and agricultural residue of walnut green husk by circulation reflux method with ethanol water solution as extractive solvent. The synergistic inhibition performance and mechanism of WGHE and potassium iodide (KI) on the corrosion of a cold rolled steel (CRS) in 1.0 mol/L citric acid (H3C6H5O7) solution were assessed by means of immersion test, potentiodynamic polarization curve measurement, and electrochemical impedance spectroscopy (EIS), as well as scanning electron microscope (SEM) and atomic force microscope (AFM). The results showed that either individual WGHE or KI was a moderate inhibitor, and the maximum inhibition efficiency was 67.4% for WGHE and 69.3% for KI respectively. When WGHE was mixed with KI, the complex could promote the inhibitive action, and the synergism parameter was higher than 1 for the solution at 20 ℃. There was a synergism between WGHE and KI, and the maximum inhibition efficiency for the mixture of 200 mg/L WGHE with 100 mg/L KI was 85.3%. No matter when WGHE was mixed with KI, the adsorption of inhibitor molecules on CRS surface obeys Langmuir isotherm. The incorporation of WGHE with KI further increases the adsorption equilibrium constant (K) up to 0.0382 L/mg,while the standard Gibbs adsorption free energy (ΔG0) shifts more negatively to -28.9 kJ/mol. Potentiodynamic curves indicate that individual WGHE or KI mainly retards the cathodic reaction, while the mixture of WGHE/KI acts as a mixed-type inhibitor. SEM and AFM microphotographs confirm that the synergistic of WGHE and KI can more efficiently alleviate the citric acid induced corrosion of the cold rolled steel.

Key words:  corrosion inhibitor      synergistic inhibition effect      adsorption      steel      walnut green husk      potassium iodide      citric acid     
Received:  31 October 2020     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51761036);Joint Key Project of Agricultural Fundamental Research in Yunnan Province (2017FG001(-004)), Fundamental Research Project for Distinguished Young Scholars in Yunnan Province(202001AV070008);Special Project of "Top Young Talents" of Yunnan Ten Thousand Talents Plan(51900109)
Corresponding Authors:  LI Xianghong     E-mail:  xianghong-li@163.com
About author:  LI Xianghong, E-mail: xianghong-li@163.com

Cite this article: 

WANG Lizi, HUANG Miao, LI Xianghong. Synergistic Inhibition Effect of Walnut Green Husk Extract and Potassium Iodide on Corrosion of Steel in Citric Acid Solution. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 819-827.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.218     OR     https://www.jcscp.org/EN/Y2021/V41/I6/819

Fig.1  Relationship between inhibition efficiency (ηw) and inhibitor concentration (c) in 1.0 mol/L H3C6H5O7: (a) WGHE; (b) KI; (c) WGHE+100 mg/L KI
Fig.2  Synergism parameter (s) values of different WGHE concentrations (c) with 100 mg/L KI in 1.0 mol/L H3C6H5O7 solution at 25~50 ℃
Fig.3  Fitted straight lines of c/θ-c: (a) WGHE; (b) KI; (c) WGHE+100 mg/L KI
InhibitorT / ℃r2SlopeK / L·mg-1ΔG0 / kJ·mol-1
WGHE250.99812.080.0199-24.54
300.99581.260.0240-25.41
400.99251.340.0179-25.48
500.99361.240.0283-27.54
KI250.99931.450.0511-26.87
300.99641.270.0526-27.39
400.97871.610.0168-25.31
500.95391.600.0137-25.58
WGHE+ 100 mg/L KI250.99961.170.1112-28.80
300.99981.130.1147-29.36
400.99921.130.0362-27.33
500.99931.130.0473-28.94
Table 1  Linear regression parameters of c/θ-c
Fig.4  Potentiodynamic polarization curves of cold rolled steel in 1.0 mol/L H3C6H5O7 solutions without and with 200 mg/L WGHE, 100 mg/L KI, 200 mg/L WGHE+100 mg/L KI at 25 ℃
InhibitorEcorr mV vs. SCEIcorrμA·cm-2-bcmV·dec-1bamV·dec-1ηp%
----41710222366---
WGHE-431622075539.2
KI-431261674674.5
WGHE+KI-461141544086.3
Table 2  Potential polarization parameters of cold rolled steel in 1.0 mol/L H3C6H5O7 solutions without and with WGHE, KI and WGHE/KI at 25 ℃
Fig.5  SEM micrographs of CRS surfaces before immersion (a) and after immersion in 1.0 mol/L H3C6H5O7 (b), in 1.0 mol/L H3C6H5O7+200 mg/L WGHE (c), in 1.0 mol/L H3C6H5O7+100 mg/L KI (d) and in 1.0 mol/L H3C6H5O7+200 mg/L WGHE+100 mg/L KI (e) at 25 ℃ for 24 h
Fig.6  AFM micrographs of CRS surfaces before immersion (a) and after immersion in 1.0 mol/L H3C6H5O7 (b), in 1.0 mol/L H3C6H5O7+200 mg/L WGHE (c), in 1.0 mol/L H3C6H5O7+100 mg/L KI (d) and in 1.0 mol/L H3C6H5O7+200 mg/L WGHE+100 mg/L KI (e) at 25 ℃ for 24 h
CRS surfaceRa / nmRq / nmRmax / nm
Before immersion45.656.2291
H3C6H5O71301821460
H3C6H5O7+WGHE96.3119950
H3C6H5O7+KI1822321510
H3C6H5O7+WGHE+KI2412912420
Table 3  Surface rough parameters of AFM micrographs of CRS surfaces
1 Finšgar M, Jackson J. Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: A review [J]. Corros. Sci., 2014, 86: 17
2 Verma C, Ebenso E E, Bahadur I, et al. An overview on plant extracts as environmental sustainable and green corrosion inhibitors for metals and alloys in aggressive corrosive media [J]. J. Mol. Liq., 2018, 266: 577
3 Li X H, Xu X, Deng S D. Research progress and prospects of the inhibition of plant corrosion inhibitors to steel [J]. Clean. World, 2018, 34(9): 39
李向红, 徐昕, 邓书端. 植物缓蚀剂对钢的缓蚀作用研究进展与展望 [J]. 清洗世界, 2018, 34(9): 39
4 M'hiri N, Veys-Renaux D, Rocca E, et al. Corrosion inhibition of carbon steel in acidic medium by orange peel extract and its main antioxidant compounds [J]. Corros. Sci., 2016, 102: 55
5 Casaletto M P, Figà V, Privitera A, et al. Inhibition of Cor-Ten steel corrosion by “green” extracts of Brassica campestris [J]. Corros. Sci., 2018, 136: 91
6 Wang X, Ren S F, Zhang D X, et al. Inhibition effect of soybean meal extract on corrosion of Q235 steel in hydrochloric acid medium [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 267
王霞, 任帅飞, 张代雄等. 豆粕提取物在盐酸中对Q235钢的缓蚀性能 [J]. 中国腐蚀与防护学报, 2019, 39: 267
7 Zhang M L, Zhao J M. Research progress of synergistic inhibition effect and mechanism [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 1
张漫路, 赵景茂. 缓蚀剂协同效应与协同机理的研究进展 [J]. 中国腐蚀与防护学报, 2016, 36: 1
8 Ituen E, James A, Akaranta O, et al. Eco-friendly corrosion inhibitor from Pennisetum purpureum biomass and synergistic intensifiers for mild steel [J]. Chin. J. Chem. Eng., 2016, 24: 1442
9 Lu Y, Zheng X W, Liu X L, et al. Corrosion inhibition of Ficus Microcarpa leaves extract and its synergistic effect with KI in sulfuric acid [J]. Surf. Technol., 2013, 42(3): 28
卢燕, 郑兴文, 刘新露等. 硫酸介质中榕树叶提取液的缓蚀性能及其与KI的缓蚀协同效应 [J]. 表面技术, 2013, 42(3): 28
10 Li X H, Deng S D, Fu H, et al. Synergistic inhibition effects of bamboo leaf extract/major components and iodide ion on the corrosion of steel in H3PO4 solution [J]. Corros. Sci., 2014, 78: 29
11 Liao Q Q, Chen Y Q, Yan A J, et al. The corrosion inhibition of 2-undeeyl-N-carboxymethyl-N-hydroxyethyl imidazoline on carbon steel in citric acid solution [J]. Chin. J. Appl. Chem., 2011, 28: 314
廖强强, 陈亚琼, 闫爱军等. 2-十一烷基--羧甲基--羟乙基咪唑啉在柠檬酸溶液中对碳钢的缓蚀作用 [J]. 应用化学, 2011, 28: 314
12 Matheswaran P, Ramasamy A K. Influence of benzotriazole on corrosion inhibition of mild steel in citric acid medium [J]. J. Chem., 2010, 7: 598025
13 Deng S D, Li X H, Du G B. Corrosion inhibition of 2-mercaptopyrimidine for cold rolled steel in citric acid solution [J]. Corros. Sci. Prot. Technol., 2017, 29: 597
邓书端, 李向红, 杜官本. 2-巯基嘧啶对冷轧钢在柠檬酸中的缓蚀性能 [J]. 腐蚀科学与防护技术, 2017, 29: 597
14 Matheswaran P, Ramasamy A K. Corrosion inhibition of mild steel in citric acid by aqueous extract of Piper Nigrum L. [J]. J. Chem., 2012, 9: 803098
15 Li X H, Deng S D, Xie X G, et al. Inhibition effect of bamboo leaves’ extract on steel and zinc in citric acid solution [J]. Corros. Sci., 2014, 87: 15
16 Li Z X, Yang L L, Basiti A, et al. Research on the development of walnut industry in China [J]. J. Chin. Agric. Mech., 2013, 34(4): 23
李忠新, 杨莉玲, 阿布力孜·巴斯提等. 中国核桃产业发展研究 [J]. 中国农机化学报, 2013, 34(4): 23
17 Li X H, Deng S D, Xu X. Extraction and preparation of walnut green husk inhibitor and its inhibitive action [J]. Fine Chem., 2018, 35: 1825
李向红, 邓书端, 徐昕. 核桃青皮缓蚀剂的提取制备及其缓蚀性能 [J]. 精细化工, 2018, 35: 1825
18 Xu X, Li X H, Deng S D. Synergistic inhibition effect of walnut green husk extract and sodium dodecyl sulfate on cold rolled steel in H3PO4 solution [J]. Surf. Technol., 2019, 48(12): 281
徐昕, 李向红, 邓书端. 核桃青皮提取物和十二烷基硫酸钠对冷轧钢在H3PO4溶液中的缓蚀协同效应 [J]. 表面技术, 2019, 48(12): 281
19 Hosseini M, Mertens S F L, Arshadi M R. Synergism and antagonism in mild steel corrosion inhibition by sodium dodecylbenzenesulphonate and hexamethylenetetramine [J]. Corros. Sci., 2003, 45: 1473
20 Zhao T P, Mu G N. The adsorption and corrosion inhibition of anion surfactants on aluminium surface in hydrochloric acid [J]. Corros. Sci., 1999, 41: 1937
21 Fuchs-Godec R, Doleček V. A effect of sodium dodecylsulfate on the corrosion of copper in sulphuric acid media [J]. Colloids Surf., 2004, 244A: 73
22 Cao C. On electrochemical techniques for interface inhibitor research [J]. Corros. Sci., 1996, 38: 2073
23 Zhang K, Lu J M, Li J, et al. A novel approach for copper protection: UV light triggered preparation ofthe click-assembled film on copper surface [J]. Chem. Eng. J., 2020, 385: 123406
24 Gewirth A A, Niece B K. Electrochemical applications of in situ scanning probe microscopy [J]. Chem. Rev., 1997, 97: 1129
25 Guo R, Li X F, Zhen J B, et al. Corrosion inhibition performance of thiourea-based rosin imidazoline quaternary ammonium salt for A3 mild steel [J]. Fine Chem., 2017, 34: 326
郭睿, 李晓芳, 甄建斌等. 硫脲基松香咪唑啉季铵盐对A3碳钢的缓蚀性能 [J]. 精细化工, 2017, 34: 326
26 Yang Q T, Guo Z K, Li J R, et al. Review on main chemical constituents of walnut green husk [J]. Guangzhou Chem. Ind., 2018, 46(6): 12
杨巧婷, 郭兆宽, 李江瑞等. 核桃青皮的主要化学成分研究综述 [J]. 广州化工, 2018, 46(6): 12
[1] LIU Quanbing, LIU Zongde, GUO Shengyang, XIAO Yi. Galvanic Corrosion Behavior of 5083 Al-alloy and 30CrMnSiA Steel in NaCl solutions[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[2] ZHENG Shien, PAN Yingjun, ZHANG Heng, KE Deqing, YANG Ling, ZHU Xingyu. Corrosion Resistance of Boride Cladding Layer on Surface of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[3] TANG Rongmao, LIU Guangming, SHI Chao, ZHANG Bangyan, TIAN Jihong, GAN Hongyu, LIU Yongqiang. Inhibition and Adsorption Behavior of Sodium Dodecyl-benzene Sulfonate on Q235 Steel in Simulated Concrete Pore Fluid[J]. 中国腐蚀与防护学报, 2021, 41(6): 857-863.
[4] SUN Baozhuang, ZHOU Xiaocheng, LI Xiaorong, SUN Weilu, LIU Zirui, WANG Yuhua, HU Yang, LIU Zhiyong. Stress Corrosion Cracking Behavior of 316L Stainless Steel with Varying Microstructure in Ammonium Chloride Environment[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[5] WANG Zhigao, HAI Chao, JIANG Jie, LAN Xinsheng, DU Cuiwei, LI Xiaogang. Corrosion Behavior of Q235 Steels in Atmosphere at Deyang District for one Year[J]. 中国腐蚀与防护学报, 2021, 41(6): 871-876.
[6] XU Guifang, LI Yuan, LEI Yucheng, ZHU Qiang. Effect of Relative Flow Velocity on Corrosion Behavior of High Nitrogen Austenitic Stainless Steel in Liquid Lead-bismuth Eutectic Alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.
[7] LEI Zheyuan, WANG Yicong, HU Qian, HUANG Feng, LIU Jing. Effect of Microstructure Distribution on Pitting Initiation and Propagation of 2002 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 837-842.
[8] HU Huihui, CHEN Changfeng. Mechanism of Temperature Influence on Adsorption of Schiff Base[J]. 中国腐蚀与防护学报, 2021, 41(6): 786-794.
[9] AN Yiqiang, WANG Xin, CUI Zhongyu. Effect of Nitric Acid Passivation on Critical Cl- Concentration for Corrosion of 304 Stainless Steel in Simulated Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[10] YU Deyuan, LIU Zhiyong, DU Cuiwei, HUANG Hui, LIN Nan. Research Progress and Prospect of Stress Corrosion Cracking of Pipeline Steel in Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(6): 737-747.
[11] ZHANG Fei, WANG Haitao, HE Yongjun, ZHANG Tiansui, LIU Hongfang. Case Analysis of Microbial Corrosion in Product Oil Pipeline[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[12] GAI Xipeng, LEI Li, CUI Zhongyu. Pitting Corrosion Behavior of 304 Stainless Steel in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[13] WANG Yicong, HU Qian, HUANG Feng, LIU Jing. Effect of Microstructure Partition on Micro-polarization Behavior and Pitting Resistance of Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 667-672.
[14] LANG Fengjun, HUANG Feng, XU Jinqiao, LI Liwei, YUE Jiangbo, LIU Jing. Composition Design and Corrosion Resistance of Mg Microallyed X70 Grade Acid Resistant Submarine Pipeline Steel (X70MOS)[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[15] ZHANG Longhua, LI Changjun, PAN Lei, HAN Sike, WANG Xin, CUI Zhongyu. Corrosion Behavior of 316L Stainless Steel in Simulated Oilfield Wastewater[J]. 中国腐蚀与防护学报, 2021, 41(5): 625-632.
No Suggested Reading articles found!