Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (2): 137-142    DOI: 10.11902/1005.4537.2015.061
Orginal Article Current Issue | Archive | Adv Search |
Negative Voltage on Structure and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Magnesium Alloy
Xuejun CUI(),Xiaofei LI,Te LI,Xiuzhou LIN
Material Corrosion and Protection Key Laboratory of Sichuan Province, College of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
Download:  HTML  PDF(1026KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Micro-arc oxidation (MAO) coatings were fabricated on AZ31B Mg-alloy in a Na2SiO3-NaOH-NaF aqueous solution by varying applied negative voltages with a bipolar asymmetric pulsing power. Then the effect of the applied negative voltage on the microstructure and corrosion resistance of MAO coatings were studied by SEM and polarization curves. The results show that a corrosion resistant coating can be obtained by an applied negative voltage 40 V for a duration 10~15 min. However, the surface morphology of the MAO coating exhibited obviously many micro-cracks when the applied negative voltage is above 60 V, resulting in a poor corrosion resistance. Therefore, the value of the negative voltage and the oxidation time should be carefully matched so that to prepare a MAO coating with appropriate compactness and corrosion resistance.

Key words:  magnesium alloy      micro-arc oxidation      negative voltage      corrosion resistance      compactness     

Cite this article: 

Xuejun CUI,Xiaofei LI,Te LI,Xiuzhou LIN. Negative Voltage on Structure and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Magnesium Alloy. Journal of Chinese Society for Corrosion and protection, 2016, 36(2): 137-142.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.061     OR     https://www.jcscp.org/EN/Y2016/V36/I2/137

Fig.1  Surface morphologies of MAO coatings at different negative voltages: (a) 0 V; (b) 20 V; (c) 40 V; (d) 60 V; (e) 80 V
Fig.2  Cross-sectional morphologies of MAO coatings at different negative voltages: (a) 0 V, 10 min; (b) 40 V, 10 min; (c) 40 V, 30 min
Fig.3  Polarization curves of MAO coatings prepared at different negative voltages in 3.5%NaCl solution
Negative
voltage / V
ba
mVdec-1
-bc
mVdec-1
-Ecorr
mV
Icorr
μAcm-2
Rp
kΩcm2
BlankAZ31B 42.4 125.9 1464 105.80 0.154
0 33.6 240.0 1523 3.40 3.200
20 320.8 136.2 1400 3.03 13.700
40 271.9 157.2 1386 0.49 88.400
60 223.5 214.8 1413 4.71 10.100
Table 1  Fitting results of the polarization curves from Fig.3
Fig.4  Polarization curves of MAO coatings prepared at 40 V negative voltage for different time in 3.5%NaCl solution
Time
min
ba
mVdec-1
-bc
mVdec-1
-Ecorr
mV
Icorr
μAcm-2
Rp
kΩcm2
10 381.4 111.1 1381 0.27 136.2
15 396.7 111.7 1389 0.07 557.2
30 366.9 111.2 1427 1.45 25.6
Table 2  Fitting results of the polarization curves from Fig.4
Fig.5  Effect of negative voltage on thickness of MAO coating formed after treatment for 10 min
Fig.6  Effect of oxidation time on thickness of MAO coating formed during treatment at -40 V
[1] Song G L.Recent progress in corrosion and protection of magnesium alloys[J]. Adv. Eng. Mater., 2005, 7(7): 563
[2] Vladimirov B V, Krit B L, Lyudin V B, et al.Microarc oxidation of magnesium alloys: A review[J]. Surf. Eng. Appl. Electrochem., 2014, 50(3): 195
[3] Zhang L, Zhang J Q, Chen C F, et al.Advances in microarc oxidation coated AZ31 Mg alloys for biomedical applications[J]. Corros.Sci., 2015, 91: 7
[4] Wang M J, Wang R C, Peng C Q, et al.Progress of anodic coatings on magnesium alloys[J]. Corros. Sci. Prot. Technol., 2012, 24(6):508
[4] (王美娟, 王日初, 彭超群等. 镁合金阳极氧化研究进展[J]. 腐蚀科学与防护技术, 2012, 24(6): 508)
[5] Sankara Narayanan T S N, Song P II, Lee M H. Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges[J]. Prog. Mater. Sci., 2014, 60: 1
[6] Song G L, Shi Z M.Corrosion mechanism and evaluation of anodized magnesium alloys[J]. Corros. Sci., 2014, 85: 126
[7] Cui X J, Liu C H, Yang R S, et al.Self-sealing micro-arc oxidation coating on AZ91D Mg alloy and its formation mechanism[J]. Surf. Coat. Technol., 2015, 269: 228
[8] Arrabal R, Mota J M, Criado A, et al.Assessment of duplex coating combining plasma electrolytic oxidation and polymer layer on AZ31 magnesium alloy[J]. Surf. Coat. Technol., 2012, 206: 4692
[9] Tang Y, Zhao X, Jiang K, et al.The influences of duty cycle on the bonding strength of AZ31B magnesium alloy by microarc oxidation treatment[J]. Surf. Coat. Technol., 2010, 205: 1789
[10] Guo Q Z, Zhang W, Du K Q, et al.Effect of negative potential on compactness of plasma electrolytic oxidation coatings on magnesium alloy AZ31B by electrochemical impedance spectrum[J]. J. Chin. Soc. Corros. Prot., 2012, 32(6): 467
[10] (郭泉忠, 张伟, 杜克勤等. 电化学阻抗谱研究负向电压对AZ31B镁合金微弧氧化陶瓷层致密性的影响[J]. 中国腐蚀与防护学报, 2012, 32(6): 467)
[11] He Z K, Tang P S.Study on micro-arc oxidation coating on different metal[J]. Mater. Prot., 2002, 35(4): 31
[11] (贺子凯, 唐培松. 不同基体材料微弧氧化生成陶瓷膜的研究[J].材料保护, 2002, 35(4): 31)
[12] Du Y, Lin X Z, Cui X J, et al.Research progress of electrolyte additives in micro-arc oxidation process for magnesium alloys[J].Mater. Prot., 2013, 46(10): 44
[12] (杜勇, 林修洲, 崔学军等. 镁合金微弧氧化电解液及其添加剂的研究进展[J]. 材料保护, 2013, 46(10): 44)
[13] Yang W, Zhao Y F, Yang S Y.Effects of characteristic and parameters of power supply on micro-arc oxidation coatings property and energy consumption[J]. Mater. Eng., 2010, (2): 86
[13] (杨威, 赵玉峰, 杨世彦. 微弧氧化电源特性和参数对膜层性能及电能消耗的影响[J]. 材料工程, 2010, (2): 86)
[14] Hou W A, Hu J H, Song X J.The influence of power supply mode on the process and performance of coating of micro-arc oxidation[J]. Nonferrous Met.(Extr. Metall.), 2007, (S1): 122
[14] (侯伟骜, 胡江辉, 宋希剑. 电源工作模式对微弧氧化过程和膜层性能的影响[J]. 有色金属 (冶炼部分), 2007, (S1): 122)
[15] Jin F Y, Chu P K, Xu G D, et al. Structure and mechanical properties of magnesium alloy treated by micro-arc discharge oxidation using direct current and high-frequency bipolar pulsing modes [J]. Mater. Sci. Eng., 2006, A435/436: 123
[16] Zhang R F, Shan D Y, Han E-H, et al.Effects of current mode on properties of anodic coatings of magnesium alloys[J]. Rare Met. Mater. Eng., 2006, 35(9): 1392
[16] (张荣发, 单大勇, 韩恩厚等. 电流模式对镁合金微弧氧化膜性能的影响[J]. 稀有金属材料与工程, 2006, 35(9): 1392)
[17] Wu D, Liu X D, Lv K.Effects of reverse voltage and oxidation time on coating formation on AZ91D magnesium alloy[J]. Spec. Cast. Nonferrous Alloy., 2008, 28(7): 564
[17] (乌迪, 刘向东, 吕凯. 负向电压与氧化时间对AZ91D微弧氧化膜层形成特性的影响[J]. 特种铸造及有色合金, 2008, 28(7): 564)
[18] Liu R M, Guo F, Li P F.Effect of voltage on formation of ceramic coating prepared by micro-arc oxidation on aluminum alloy[J].Trans. Mater. Heat Treat., 2008, 29(1): 137
[18] (刘荣明, 郭锋, 李鹏飞. 电压对铝合金微弧氧化陶瓷层形成的影响[J]. 材料热处理学报, 2008, 29(1): 137)
[19] Hwang I J, Hwang D Y, Ko Y G, et al.Correlation between current frequency and electrochemical properties of Mg alloy coated by micro arc oxidation[J]. Surf. Coat. Technol., 2012, 206: 3360
[20] Liu Z D, Fu H, Sun M J, et al.Influence of negative voltage on coating of magnesium alloy micro-arc oxidation[J]. Light Met., 2009, 15(4): 45
[20] (刘忠德, 付华, 孙茂坚等. 负向电压对镁合金微弧氧化膜层的影响[J]. 轻金属, 2009, 15(4): 45)
[21] Cui X J, Wang R, Wei J S, et al.Effect of electrical parameters on micromorphology and corrosion resistance of micro-arc oxidation coating on AZ31B Mg alloy[J]. J. Chin. Soc. Corros. Prot., 2014, 34(6): 495
[21] (崔学军, 王荣, 魏劲松等. 电参数对AZ31B 镁合金微弧氧化膜微观形貌及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 495)
[22] Pan Y K, Wang D G, Chen C Z.Effect of negative voltage on the microstructure,degradability and in vitro bioactivity of microarc oxidized coatings on ZK60 magnesium alloy[J]. Mater. Lett., 2014, 119: 127
[23] Mi T, Jiang B, Liu Z, et al.Plasma formation mechanism of microarc oxidation[J]. Electrochim. Acta, 2014, 123: 369
[24] Mohannad M S, Bosta A, Ma K J.Suggested mechanism for the MAO ceramic coating on aluminium substrates using bipolar current mode in the alkaline silicate electrolytes[J]. Appl. Surf. Sci., 2014, 308: 121
[1] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[2] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[3] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[4] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[5] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[6] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[7] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[8] JIA Yizheng, WANG Baojie, ZHAO Mingjun, XU Daokui. Effect of Solid Solution Treatment on Corrosion and Hydrogen Evolution Behavior of an As-extruded Mg-Zn-Y-Nd Alloy in an Artificial Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[9] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[10] ZHANG Yao, GUO Chen, LIU Yanhui, HAO Meijuan, CHENG Shiming, CHENG Weili. Electrochemical Corrosion Behavior of Extruded Dilute Mg-2Sn-1Al-1Zn Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[11] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[12] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[13] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[14] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[15] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
No Suggested Reading articles found!