|
|
Negative Voltage on Structure and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Magnesium Alloy |
Xuejun CUI(),Xiaofei LI,Te LI,Xiuzhou LIN |
Material Corrosion and Protection Key Laboratory of Sichuan Province, College of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China |
|
|
Abstract Micro-arc oxidation (MAO) coatings were fabricated on AZ31B Mg-alloy in a Na2SiO3-NaOH-NaF aqueous solution by varying applied negative voltages with a bipolar asymmetric pulsing power. Then the effect of the applied negative voltage on the microstructure and corrosion resistance of MAO coatings were studied by SEM and polarization curves. The results show that a corrosion resistant coating can be obtained by an applied negative voltage 40 V for a duration 10~15 min. However, the surface morphology of the MAO coating exhibited obviously many micro-cracks when the applied negative voltage is above 60 V, resulting in a poor corrosion resistance. Therefore, the value of the negative voltage and the oxidation time should be carefully matched so that to prepare a MAO coating with appropriate compactness and corrosion resistance.
|
|
[1] | Song G L.Recent progress in corrosion and protection of magnesium alloys[J]. Adv. Eng. Mater., 2005, 7(7): 563 | [2] | Vladimirov B V, Krit B L, Lyudin V B, et al.Microarc oxidation of magnesium alloys: A review[J]. Surf. Eng. Appl. Electrochem., 2014, 50(3): 195 | [3] | Zhang L, Zhang J Q, Chen C F, et al.Advances in microarc oxidation coated AZ31 Mg alloys for biomedical applications[J]. Corros.Sci., 2015, 91: 7 | [4] | Wang M J, Wang R C, Peng C Q, et al.Progress of anodic coatings on magnesium alloys[J]. Corros. Sci. Prot. Technol., 2012, 24(6):508 | [4] | (王美娟, 王日初, 彭超群等. 镁合金阳极氧化研究进展[J]. 腐蚀科学与防护技术, 2012, 24(6): 508) | [5] | Sankara Narayanan T S N, Song P II, Lee M H. Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges[J]. Prog. Mater. Sci., 2014, 60: 1 | [6] | Song G L, Shi Z M.Corrosion mechanism and evaluation of anodized magnesium alloys[J]. Corros. Sci., 2014, 85: 126 | [7] | Cui X J, Liu C H, Yang R S, et al.Self-sealing micro-arc oxidation coating on AZ91D Mg alloy and its formation mechanism[J]. Surf. Coat. Technol., 2015, 269: 228 | [8] | Arrabal R, Mota J M, Criado A, et al.Assessment of duplex coating combining plasma electrolytic oxidation and polymer layer on AZ31 magnesium alloy[J]. Surf. Coat. Technol., 2012, 206: 4692 | [9] | Tang Y, Zhao X, Jiang K, et al.The influences of duty cycle on the bonding strength of AZ31B magnesium alloy by microarc oxidation treatment[J]. Surf. Coat. Technol., 2010, 205: 1789 | [10] | Guo Q Z, Zhang W, Du K Q, et al.Effect of negative potential on compactness of plasma electrolytic oxidation coatings on magnesium alloy AZ31B by electrochemical impedance spectrum[J]. J. Chin. Soc. Corros. Prot., 2012, 32(6): 467 | [10] | (郭泉忠, 张伟, 杜克勤等. 电化学阻抗谱研究负向电压对AZ31B镁合金微弧氧化陶瓷层致密性的影响[J]. 中国腐蚀与防护学报, 2012, 32(6): 467) | [11] | He Z K, Tang P S.Study on micro-arc oxidation coating on different metal[J]. Mater. Prot., 2002, 35(4): 31 | [11] | (贺子凯, 唐培松. 不同基体材料微弧氧化生成陶瓷膜的研究[J].材料保护, 2002, 35(4): 31) | [12] | Du Y, Lin X Z, Cui X J, et al.Research progress of electrolyte additives in micro-arc oxidation process for magnesium alloys[J].Mater. Prot., 2013, 46(10): 44 | [12] | (杜勇, 林修洲, 崔学军等. 镁合金微弧氧化电解液及其添加剂的研究进展[J]. 材料保护, 2013, 46(10): 44) | [13] | Yang W, Zhao Y F, Yang S Y.Effects of characteristic and parameters of power supply on micro-arc oxidation coatings property and energy consumption[J]. Mater. Eng., 2010, (2): 86 | [13] | (杨威, 赵玉峰, 杨世彦. 微弧氧化电源特性和参数对膜层性能及电能消耗的影响[J]. 材料工程, 2010, (2): 86) | [14] | Hou W A, Hu J H, Song X J.The influence of power supply mode on the process and performance of coating of micro-arc oxidation[J]. Nonferrous Met.(Extr. Metall.), 2007, (S1): 122 | [14] | (侯伟骜, 胡江辉, 宋希剑. 电源工作模式对微弧氧化过程和膜层性能的影响[J]. 有色金属 (冶炼部分), 2007, (S1): 122) | [15] | Jin F Y, Chu P K, Xu G D, et al. Structure and mechanical properties of magnesium alloy treated by micro-arc discharge oxidation using direct current and high-frequency bipolar pulsing modes [J]. Mater. Sci. Eng., 2006, A435/436: 123 | [16] | Zhang R F, Shan D Y, Han E-H, et al.Effects of current mode on properties of anodic coatings of magnesium alloys[J]. Rare Met. Mater. Eng., 2006, 35(9): 1392 | [16] | (张荣发, 单大勇, 韩恩厚等. 电流模式对镁合金微弧氧化膜性能的影响[J]. 稀有金属材料与工程, 2006, 35(9): 1392) | [17] | Wu D, Liu X D, Lv K.Effects of reverse voltage and oxidation time on coating formation on AZ91D magnesium alloy[J]. Spec. Cast. Nonferrous Alloy., 2008, 28(7): 564 | [17] | (乌迪, 刘向东, 吕凯. 负向电压与氧化时间对AZ91D微弧氧化膜层形成特性的影响[J]. 特种铸造及有色合金, 2008, 28(7): 564) | [18] | Liu R M, Guo F, Li P F.Effect of voltage on formation of ceramic coating prepared by micro-arc oxidation on aluminum alloy[J].Trans. Mater. Heat Treat., 2008, 29(1): 137 | [18] | (刘荣明, 郭锋, 李鹏飞. 电压对铝合金微弧氧化陶瓷层形成的影响[J]. 材料热处理学报, 2008, 29(1): 137) | [19] | Hwang I J, Hwang D Y, Ko Y G, et al.Correlation between current frequency and electrochemical properties of Mg alloy coated by micro arc oxidation[J]. Surf. Coat. Technol., 2012, 206: 3360 | [20] | Liu Z D, Fu H, Sun M J, et al.Influence of negative voltage on coating of magnesium alloy micro-arc oxidation[J]. Light Met., 2009, 15(4): 45 | [20] | (刘忠德, 付华, 孙茂坚等. 负向电压对镁合金微弧氧化膜层的影响[J]. 轻金属, 2009, 15(4): 45) | [21] | Cui X J, Wang R, Wei J S, et al.Effect of electrical parameters on micromorphology and corrosion resistance of micro-arc oxidation coating on AZ31B Mg alloy[J]. J. Chin. Soc. Corros. Prot., 2014, 34(6): 495 | [21] | (崔学军, 王荣, 魏劲松等. 电参数对AZ31B 镁合金微弧氧化膜微观形貌及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 495) | [22] | Pan Y K, Wang D G, Chen C Z.Effect of negative voltage on the microstructure,degradability and in vitro bioactivity of microarc oxidized coatings on ZK60 magnesium alloy[J]. Mater. Lett., 2014, 119: 127 | [23] | Mi T, Jiang B, Liu Z, et al.Plasma formation mechanism of microarc oxidation[J]. Electrochim. Acta, 2014, 123: 369 | [24] | Mohannad M S, Bosta A, Ma K J.Suggested mechanism for the MAO ceramic coating on aluminium substrates using bipolar current mode in the alkaline silicate electrolytes[J]. Appl. Surf. Sci., 2014, 308: 121 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|