Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (5): 467-473    DOI: 10.11902/1005.4537.2014.191
Current Issue | Archive | Adv Search |
Electrochemical Characteristics of Rebar in Polymer-modified Mortar and Resistance to Chloride Ion Penetration of Polymer-modified Concrete
Chenxi LV,Yinghua WEI(),Jing LI,Chao SUN
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(1378KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The electrochemical characteristics of rebar in a polymer-modified mortar (PMM) and a common mortar (CM) were comparatively studied by means of electrochemical impedance spectroscopy (EIS), linear polarization (LP) and open circuit potential measurements. The result showed
that the formation rate of passive film on the rebar steel in PMM was slower than that in CM. After the passive film was completely formed, the impedance of the rebar steel in PMM was larger than that in CM. The effect of polymer modification on the resistance to chloride ion penetration of polymer-modified concret (PMC) was evaluated by rapid chloride diffusion coefficient method (RCM)and which on the mechanical property of PMC was also examined. It showed that the addition of polymer can clearly enhanced the resistance to chloride ion penetration and also the mechanical property of the modified concrete.

Key words:  polymer-modified mortar      Cl-      penetration      electrochemical impedance spectroscopy     
ZTFLH:     
Fund:  

Cite this article: 

Chenxi LV, Yinghua WEI, Jing LI, Chao SUN. Electrochemical Characteristics of Rebar in Polymer-modified Mortar and Resistance to Chloride Ion Penetration of Polymer-modified Concrete. Journal of Chinese Society for Corrosion and protection, 2015, 35(5): 467-473.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.191     OR     https://www.jcscp.org/EN/Y2015/V35/I5/467

Fig.1  Flow chart of mixing of PMM and PMC
Classification Polymer/Cement Water/Cement Sand/Cement Gravel/Cement Defoamer/Polymer
PMM 0 0.4 2 --- ---
0.15 0.4 2 --- 0.01
PMC 0 0.4 2 3.2 ---
0.03~0.15 0.4 2 3.2 0.01
Table 1  Mix proportion of PMM and PMC
Fig.2  Setting drawing of RCM
Fig.3  Nyquist (a) and Bode (b) plots of rebar in CM block
Fig.4  Nyquist (a) and Bode (b) plots of rebar in PMM block
Fig.5  Equivalent circuit of rebar in CM and PMM block
Dosage of polymer RS / Ωcm2 R1 / Ωcm2 Q1 / Fcm-2 n1 R2 / Ωcm2 Q2 / Fcm-2 n2 Ecorr / %
0 1.245×10-2 2040 8.82×10-7 0.410 4.06×106 2.29×10-5 0.887 3.946×10-2
0.15 0.01 2654 1.59×10-7 0.590 6.37×106 2.14×10-5 0.920 5.114×10-3
Table 2  Results of EIS fitting
Fig.6  Nyquist (a) and phase angle (b) plots of rebar embedded in CM for different time
Fig.7  Nyquist (a) and phase angle (b) plots of rebar embedded in PMM for different time
Time CM PMM
d R2 / Ωcm2 Q2 / Fcm-2 n2 R2 / Ωcm2 Q2 / Fcm-2 n2
2 3.82×105 3.46×10-5 0.870 1.36×105 5.33×10-5 0.821
7 1.27×106 2.94×10-5 0.869 4.39×105 4.58×10-5 0.870
10 1.93×106 2.81×10-5 0.865 7.50×105 4.54×10-5 0.867
14 4.12×106 2.48×10-5 0.885 9.80×105 4.26×10-5 0.880
21 3.98×106 2.46×10-5 0.882 1.83×106 3.28×10-5 0.890
28 4.03×106 2.46×10-5 0.882 4.56×106 2.49×10-5 0.913
35 4.06×106 2.29×10-5 0.887 6.37×106 2.14×10-5 0.921
Table 3  EIS fitting results of rebar in CM and PMM blocks
Fig.8  Comparison of R2 of rebar in CM and PMM
Fig.9  Comparison of impedance obtained by LP and EIS for rebar in CM (a) and PMM (b)
Fig.10  Corrosion potential of rebar in CM and PMM
Fig.11  DRCM of Cl- in concrete containing different dosages of polymer
Fig.12  Axial compressive strength (a) and bending strength (b) of PMC
[1] El-Hawary M M, Abdul-Jaleel A. Durability assessment of epoxy modified concrete[J]. Const. Build. Mater., 2010, 24(8): 1523
[2] Ohama Y. Polymer-based admixtures[J]. Cement Concrete Composites, 1998, 20(2): 189
[3] Ma H, Li Z. Microstructures and mechanical properties of polymer modified mortars under distinct mechanisms[J]. Constr. Build. Mater., 2013, 47: 579
[4] Miller M. Polymers in Cementitious Materials [M]. Aberdeen: iSmithersRapra Publishing, 2005
[5] Pascal S, Alliche A, Pilvin P. Mechanical behaviour of polymer modified mortars[J]. Mater. Sci. Eng., 2004, A380(1): 1
[6] Hu J, Koleva D A, Van Breugel K. Corrosion performance of reinforced mortar in the presence of polymeric nano-aggregates: electrochemical behavior, surface analysis, and properties of the steel/cement paste interface[J]. J. Mater. Sci., 2012, 47(12): 4981
[7] Song G. Equivalent circuit model for AC electrochemical impedance spectroscopy of concrete[J]. Cem. Concr. Res., 2000, 30(11): 1723
[8] Koleva D A, Van Breugel K, De Wit J H W, et al. Electrochemical behavior, microstructural analysis, and morphological observations in reinforced mortar subjected to chloride ingress[J]. J. Electrochem. Soc., 2007, 154(3): E45
[9] Ismail M, Ohtsu M. Corrosion rate of ordinary and high-performance concrete subjected to chloride attack by AC impedance spectroscopy[J]. Constr. Build. Mater., 2006, 20(7): 458
[10] Suryavanshi A K, Scantlebury J D, Lyon S B. Corrosion of reinforcement steel embedded in high water-cement ratio concrete contaminated with chloride[J]. Cement Concrete Composites, 1998, 20(4): 263
[11] Chung D D L. Use of polymers for cement-based structural materials[J]. J. Mater. Sci., 2004, 39(9): 2973
[12] GB/T50082-2009. Standard for test methods of long-term performance and durability of ordinary concreteGB/T50082-2009. Standard for test methods of long-term performance and durability of ordinary concrete[S] (GB/T50082-2009. 普通混凝土长期性能和耐久性能试验方法标准GB/T50082-2009. 普通混凝土长期性能和耐久性能试验方法标准[S])
[13] Cao C N,Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy[M]. Beijing: Science Press, 2002 (曹楚南,张鉴清. 电化学阻抗谱导论[M]. 北京: 科学出版社, 2002)
[14] Tian T. Study on properties of waterborne epoxy resin emulsion modified cement mortar [D]. Changsha: Hunan University, 2007 (田甜. 水性环氧树脂乳液改性水泥砂浆性能的研究 [D]. 长沙: 湖南大学, 2007)
[1] CAO Jingyi, YANG Yange, FANG Zhigang, SHOU Haiming, LI Liang, FENG Yafei, WANG Xingqi, CHU Guangzhe, ZHAO Yi. Failure Behavior of Fresh Water Tank Coating in Different Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[2] CAO Jingyi, FANG Zhigang, LI Liang, FENG Yafei, WANG Xingqi, SHOU Haiming, YANG Yange, CHU Guangzhe, YIN Wenchang. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Fresh Water and Salt Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[3] CAO Jingyi, FANG Zhigang, FENG Yafei, LI Liang, YANG Yange, SHOU Haiming, WANG Xingqi, ZANG Bolin. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[4] DENG Peichang, ZHONG Jie, WANG Kun, HU Jiezhen, LI Ziyun, CHEN Chuxin, SHEN Xiaohan. Important Influential Factor for Corrosion of High-altitude Marine Engineering Equipment in Atmosphere-chloride Ion Deposition Rate[J]. 中国腐蚀与防护学报, 2020, 40(5): 474-478.
[5] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[6] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[7] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[8] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[9] Xiuling LAN,Guangming LIU,Jiesheng ZHOU,Zhilei LIU,Shusen PENG,Maodong LI. Preparation and Properties of Organosilicone/SiO2Hybrid Sol Modified Acrylic Resin[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[10] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[11] Sanxi DENG, Xiaoyu YAN, Ke CHAI, Jinyi WU, Hongwei SHI. Effect of Pseudomonas sp. on Decomposition and Anticorrosion Behavior of Polysiloxane Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[12] Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[13] Qi GUI, Dajiang ZHENG, Guangling SONG. Electrochemically Accelerated Evaluation of Protectiveness for an Alkyd Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[14] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[15] Meng MEI, Hongai ZHENG, Huida CHEN, Ming ZHANG, Daquan ZHANG. Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
No Suggested Reading articles found!