Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (5): 461-466    DOI: 10.11902/1005.4537.2014.197
Current Issue | Archive | Adv Search |
Corrosion Behavior of 20MnSiCrV Corrosion Resistant Rebar in Chloride Containing Environment
Jianchun ZHANG(),Han MA,Longfei ZUO,Yang LI
Institute of Research of Iron & Steel, Shasteel, Zhangjiagang 215625, China
Download:  HTML  PDF(2811KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Corrosion resistance and corrosion sensitivity to chloride containing environment of 20MnSiCrV steel and 20MnSiV steel was comparatively investigated by salt-spray corrosion test with 3.5%NaCl solution, as well as electrochemical impedance spectroscopy and polarization curve measurements in chloride containing alkaline solutions. The formed corrrosion product scales were characterized by SEM, EPMA and XRD. The results show that the corrosion resistance to Cl- of 20MnSiCrV steel was 1.5 times over that of 20MnSiV steel. The average corrosion rate and depth of corrosion pits of 20MnSiCrV steel were 58% and 74% of those of 20MnSiV steel, respectively. The major components of corrosion products of the two steels were Fe3O4, α-FeOOH and γ-FeOOH. Corrosion scale of 20MnSiCrV steel can be differentiated into an inner layer and an outer layer. The inner layer is enriched in Cr and Si, thereby beneficial to the corrosion resistance of the steel.

Key words:  corrosion resistant rebar      electrochemical impedance spectroscopy      corrosion sensitivity      inner rust layer     
ZTFLH:     
Fund:  

Cite this article: 

Jianchun ZHANG, Han MA, Longfei ZUO, Yang LI. Corrosion Behavior of 20MnSiCrV Corrosion Resistant Rebar in Chloride Containing Environment. Journal of Chinese Society for Corrosion and protection, 2015, 35(5): 461-466.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.197     OR     https://www.jcscp.org/EN/Y2015/V35/I5/461

Steel C Si Mn P S Cr V
20MnSiCrV 0.200 0.640 0.710 0.024 0.004 0.870 0.030
20MnSiV 0.210 0.490 1.440 0.019 0.007 --- 0.028
Table 1  Chemical compositions of two steels
Fig.1  Polarization curves of two steels in saturated Ca(OH)2 solutions without Cl- (a), and with 0.2 mol/L (b), 0.4 mol/L

(c) and 0.6 mol/L (d) Cl-

Fig.2  Polarization curves of two steels in 3.5%NaCl solution after immersion for different time
Fig.3  EIS of two steels in 3.5%NaCl solution after immersion for different time
Fig.4  Mass gains of two steels after salt-spray corrosion test
Fig.5  Depths of etch pits of two steels after salt-spray corrosion test
Fig.6  Surface morphologies of CR (a) and LC (b) steels after 168 h salt-spray corrosion test
Fig.7  Cross section morphologies of corrosion layers formed on CR (a) and LC (b) steels after 168 h salt-spray corrosion test
Fig.8  XRD spectra of CR (a) and LC (b) steels after salt-spray corrosion test
Fig.9  Cross section image and corresponding element mappings of corrosion layer formed on CR steel after salt-spray corrosion test
[1] Zhu X R,Wang X R. Corrosion and Protection of Metals in Marine Environment[M]. Beijing: National Defense Industry Press, 1999 (朱相荣,王相润. 金属材料的海洋腐蚀与防护[M]. 北京: 国防工业出版社, 1999)
[2] Ma H, Wang S F. Development and practice of energy saving steel reinforcing bar and wire[J]. Heat Treat. Met., 2013, 38(7): 1 (麻晗, 王世芳. 节能型钢筋、线材的研发与生产实践[J]. 金属热处理, 2013, 38(7): 1)
[3] Wang S J. Giving full play to the potential of enterprise development and developing low cost earthquake and corrosion resistant steel [N]. World Metals, 2013-5-21 (B16) (王市均. 充分发挥企业研发潜力,开发低成本抗震耐蚀钢筋 [N]. 世界金属导报, 2013-5-21(B16))
[4] Ge Y,Zhu X C,Li Y. Corrosion Protection of Reinforced Concrete Structures in Bridge[M]. Beijing: Chemical Industry Press, 2011 (葛燕,朱锡昶,李岩. 桥梁钢筋混凝土结构防腐蚀[M]. 北京: 化学工业出版社, 2011)
[5] Zuo L F, Ma H, Huang W K, et al. Development of 400 MPa-grade seawater corrosion resistant rebar in sha-steel[J]. Steel Roll., 2014, 31: 58 (左龙飞, 麻晗, 黄文克等. 沙钢400 MPa级耐海水腐蚀螺纹钢的开发[J]. 轧钢, 2014, 31: 58)
[6] Zhang J C, Huang W K, Ma H. Microstructure and properties of 20MnSiCrV corrosion resistant rebar in continuous cooling transformation[J]. Hot Work. Technol., 2014, 43(6): 91 (张建春, 黄文克, 麻晗. 耐蚀钢筋20MnSiCrV的连续冷却转变组织与性能[J]. 热加工工艺, 2014, 43(6): 91)
[7] Yamashita M, Miyuki H, Matsuda Y, et al. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century[J]. Corros. Sci., 1994, 36(2):283
[8] Stratmann M, Bohnenkamp K, Engell H J. An electrochemical study of phase-transition in rust layers[J]. Corros. Sci., 1983, 23(9): 969
[9] Deliyanni E A, Bakoyannakis D N, Zouboulis A I, et al. Akaganeite-type β-FeOOH nanocrystals: Preparation and characterization[J]. Microporous Mesporous Mater., 2001, 42(1): 49
[10] Dillmann Ph, Mazaudier F, Hoerle S. Advances in under- standing atmospheric corrosion of iron. I. Rust characterization of ancient ferrous artefacrs exposed to indoor atmospheric corrosion[J]. Corros. Sci., 2004, 46(6): 1401
[11] Nishimura T, Katayama H, Noda K. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions[J]. Corrosion, 2000, 56(9): 935
[12] Maansfeld F. Corrosion Mechanisms [M]. New York: Marcel Dekker, Inc., 1986
[13] Matsushima I,Jin Y K. Low-alloy Corrosion Resistant Steels[M]. Beijing: Metallurgical Industry Press, 2004 (松岛岩. 靳裕康. 低合金耐蚀钢[M]. 北京: 冶金工业出版社, 2004)
[14] Yamashita M, Nagano H, Misawa T, et al. Structure of protective rust layers formed on weathering steel by long term exposure in the industrial atmospheres of Japan and North America[J]. ISIJ Int., 1998, 38(3): 285
[15] Sei J, Cook D C, Townsend H E. Atmosphere corrosion of different steel in marine, ruraland industrial environments[J]. Corros.Sci., 1999, 41: 1687
[16] Zhang M Y. Overview of the air and sea water corrosion corrosion resistant steel in foreign countries[J]. Shanghai Met., 1982, 3(4): 14 (张明洋. 国外耐大气、海水腐蚀用钢概述[J]. 上海金属, 1982, 3(4): 14)
[1] CAO Jingyi, YANG Yange, FANG Zhigang, SHOU Haiming, LI Liang, FENG Yafei, WANG Xingqi, CHU Guangzhe, ZHAO Yi. Failure Behavior of Fresh Water Tank Coating in Different Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[2] CAO Jingyi, FANG Zhigang, LI Liang, FENG Yafei, WANG Xingqi, SHOU Haiming, YANG Yange, CHU Guangzhe, YIN Wenchang. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Fresh Water and Salt Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[3] CAO Jingyi, FANG Zhigang, FENG Yafei, LI Liang, YANG Yange, SHOU Haiming, WANG Xingqi, ZANG Bolin. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[4] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[5] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[6] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[7] Xiuling LAN,Guangming LIU,Jiesheng ZHOU,Zhilei LIU,Shusen PENG,Maodong LI. Preparation and Properties of Organosilicone/SiO2Hybrid Sol Modified Acrylic Resin[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[8] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[9] Sanxi DENG, Xiaoyu YAN, Ke CHAI, Jinyi WU, Hongwei SHI. Effect of Pseudomonas sp. on Decomposition and Anticorrosion Behavior of Polysiloxane Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[10] Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[11] Qi GUI, Dajiang ZHENG, Guangling SONG. Electrochemically Accelerated Evaluation of Protectiveness for an Alkyd Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[12] Meng MEI, Hongai ZHENG, Huida CHEN, Ming ZHANG, Daquan ZHANG. Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[13] Fandi MENG, Li LIU, Ying LI, Fuhui WANG. Embedded Microelectrode for In situ Electrochemical Impedance Spectroscopy Measurement of Organic Coating Under Marine Alternating Hydrostatic Pressure[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[14] Jun WANG, Chao FENG, Bicao PENG, Yi XIE, Minghua ZHANG, Tangqing WU. Corrosion Behavior of Weld Joint of S450EW Steel in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[15] Jia WANG, Mengyang JIA, Zhaohui YANG, Bing HAN. On Completeness of EIS Equivalent Circuit Analysis for Electrochemical Corrosion Process[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
No Suggested Reading articles found!