Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (5): 474-478    DOI: 10.11902/1005.4537.2019.206
Current Issue | Archive | Adv Search |
Important Influential Factor for Corrosion of High-altitude Marine Engineering Equipment in Atmosphere-chloride Ion Deposition Rate
DENG Peichang1, ZHONG Jie1, WANG Kun2, HU Jiezhen2(), LI Ziyun2, CHEN Chuxin1, SHEN Xiaohan1
1 College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
2 College of Mechanical and Power Engineering, Guangdong Ocean University, Zhanjiang 524088, China
Download:  HTML  PDF(2005KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The deposition rate of Cl- is the important influence factor for the corrosion of high-altitude marine engineering equipment in marine atmosphere. For sampling the Cl- deposition rate at different heights, a so called “kite hanging wet-candles”method was invented, while the Cl- concentrations of the collected samples were analyzed by ion chromatography. The effect of environmental factors on the Cl- deposition rate was analyzed by the Pearson correlation coefficient method. At the Hainan island of the South China Sea, the distribution of the Cl- deposition rates exhibits a reverse “S”-shape in the range of 10 m to 100 m vertical scope in the summer time, however, the Cl- deposition rates were gradually reduced in the period from June to August.

Key words:  Cl-      kite hanging wet-candle method      sedimentation rate      Pearson correlation coefficient method     
Received:  13 November 2019     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51801033);"Sail of the Sea-sailing Plan" Project of Guangdong University Students(qhjh2018zr15)
Corresponding Authors:  HU Jiezhen     E-mail:  jiezhen0520@163.com

Cite this article: 

DENG Peichang, ZHONG Jie, WANG Kun, HU Jiezhen, LI Ziyun, CHEN Chuxin, SHEN Xiaohan. Important Influential Factor for Corrosion of High-altitude Marine Engineering Equipment in Atmosphere-chloride Ion Deposition Rate. Journal of Chinese Society for Corrosion and protection, 2020, 40(5): 474-478.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.206     OR     https://www.jcscp.org/EN/Y2020/V40/I5/474

Fig.1  Schematic diagram of the Cl- sedimentation
Fig.2  Schematic diagram of wet-candle rate sampling device
Date M/D102030405060708090100
6/25225.4140.283.861.278.6107.395.789.683.777.5
7/30129.977.539.251.855.066.667.774.973.974.2
8/2570.427.830.233.844.661.358.559.652.948.9
Table 1  Different vertical heights chloride ion sedimentation rate in different month (mg·m-2·d-1)

Date

M/D

Wind directionWind speed m·s-1Relative humidity / %

Temperature

6/25120~1503.97731
7/3060~905.49228
8/25120~15059626
Table 2  Environmental factors in different month
Fig.3  Relationships of chloride ion sedimentation rate with different vertical heights
Fig.4  High-altitude chloride ion sedimentation rate in summer: (a) June, (b) July, (c) August
VariableParameterValue
Wind directionPearson correlation coefficient0.029
Significance (double-tailed T test)0.880
Wind speedPearson correlation coefficient-0.439*
Significance (double-tailed T test)0.015
HumidityPearson correlation coefficient-0.570**
Significance (double-tailed T test)0.001
TemperaturePearson correlation coefficient0.591**
Significance (double-tailed T test)0.001
Table 3  Environmental factors on the chloride ion sedimentation rate by Pearson correlation
[1] Wang Z Y, Yu G C, Han W. A survey of the atmospheric corrosiveness of natural environments in China [J]. Corros. Prot., 2003, 24: 323
(王振尧, 于国才, 韩薇. 我国自然环境大气腐蚀性调查 [J]. 腐蚀与防护, 2003, 24: 323)
[2] Pardo A, Otero E, Merino M C, et al. Influence of pH and chloride concentration on the pitting and crevice corrosion behavior of high-alloy stainless steels [J]. Corrosion, 2000, 56: 411
doi: 10.5006/1.3280545
[3] Wallinder I O, Zhang X, Goidanich S, et al. Corrosion and run off rates of Cu and three Cu-alloys in marine environments with increasing chloride deposition rate [J]. Sci. Total Environ., 2014, 472: 681
doi: 10.1016/j.scitotenv.2013.11.080
[4] Shibaeva T V, Laurinavichyute V K, Tsirlina G A, et al. The effect of microstructure and non-metallic inclusions on corrosion behavior of low carbon steel in chloride containing solutions [J]. Corros. Sci., 2014, 80: 299
doi: 10.1016/j.corsci.2013.11.038
[5] Cheng X D, Xu L, Fan Y P, et al. Corrosion behavior of different bars in chloride ion corrosion [J]. Corros. Prot., 2016, 37: 407
(程旭东, 徐立, 范燕平等. 氯离子侵蚀下异类钢筋的腐蚀行为 [J]. 腐蚀与防护, 2016, 37: 407)
[6] He J X, Qin X Z, Yi P, et al. Corrosion exposure study on Q235 steel in marine atmospheric [J]. Surf. Technol., 2006, 35(4): 21
(何建新, 秦晓洲, 易平等. Q235钢海洋大气腐蚀暴露试验研究 [J]. 表面技术, 2006, 35(4): 21)
[7] Wang F P, Chen H, Li X G. Effect of deposition of electrolytes on atmospheric corrosion of Zn under thin liquid film [J]. J. Univ. Sci. Technol Beijing, 2002, 24(4): 445
(王凤平, 陈华, 李晓刚. 盐粒沉降对Zn大气腐蚀的影响 [J]. 北京科技大学学报, 2002, 24(4): 445)
[8] Chen J Q, Tang Q H, Guo Z H, et al. Comparative study of chlorides deposition rates determination methods in marine atmosphere-wet candle and dry plate methods [J]. Equip. Environ. Eng., 2017, 14(6): 77
(陈建琼, 唐其环, 郭赞洪等. 海洋大气氯离子监测方法—湿烛法与干片法对比研究 [J]. 装备环境工程, 2017, 14(6): 77)
[9] Hu J Z, Liu Q B, Hu H H, et al. Cl- sedimentation rate in atmosphere of tropical island [J]. Corros. Prot., 2018, 39: 463
(胡杰珍, 刘泉兵, 胡欢欢等. 热带海岛大气中氯离子沉降速率 [J]. 腐蚀与防护, 2018, 39: 463)
[10] Liu J J, Zhang Z X, Wu Z H. Effects of atmospheric environment on corrosion of wind turbines [J]. Corros. Prot., 2018, 39: 463
(刘俊珺, 张志训, 武占海. 大气环境对风电机组腐蚀的影响 [J]. 腐蚀与防护, 2018, 39: 463)
[11] Wang K, Hu J Z, Wang G, et al. Research status of a pipeline erosion-corrosion apparatus [J]. J. Guangdong Ocean Univ., 2018, 38(3): 92
(王坤, 胡杰珍, 王贵等. 管流式冲刷腐蚀实验装置的研究进展 [J]. 广东海洋大学学报, 2018, 38(3): 92)
[12] Zhao R, Jin Z Q, Cao J R, et al. Numercial simulation of chloride ions transportation considering temperature and humidity in marine environment [J]. Ocean Eng., 2018, 36(1): 99
(赵蕊, 金祖权, 曹杰荣等. 海洋环境中温湿度变化对混凝土氯离子传输研究 [J]. 海洋工程, 2018, 36(1): 99)
[1] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[2] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[3] Shuan LIU,Kaihe ZHOU,Yunhui FANG,Xiaozhong XU,Jiong JIANG,Xiaoping GUO,Wenru ZHEN,Jibin PU,Liping WANG. Effect of Environmental Factors on Corrosion Behavior of Zn in Saturated Zn(OH)2 Solution I—Cl- Concentration and pH Values[J]. 中国腐蚀与防护学报, 2016, 36(6): 522-528.
[4] Chenxi LV, Yinghua WEI, Jing LI, Chao SUN. Electrochemical Characteristics of Rebar in Polymer-modified Mortar and Resistance to Chloride Ion Penetration of Polymer-modified Concrete[J]. 中国腐蚀与防护学报, 2015, 35(5): 467-473.
[5] Zaijian LIU,Jia WANG,Penghui ZHANG,Yanhua WANG,Yuan ZHANG. Corrosion Behavior of 5083 Al-alloy in Seawater and Its Cathodic Protection[J]. 中国腐蚀与防护学报, 2015, 35(3): 239-244.
[6] YUE Zhuwen,LI Jingpei,YANG Bo,SHAO Wei,LV Tao. Solve Chloride Ions Diffusion Problem by Separation Variable Method for Reinforced Concrete Slab in Marine Environment[J]. 中国腐蚀与防护学报, 2014, 34(1): 95-100.
[7] DU Yali,ZHANG Junxi,JIANG Jun,YUAN Xujie,WANG Lingzhi,MA Xingchi. Corrosion Behavior of Reinforced Steel in Simulated Pore Solution with Gradual Augment of Cl- [J]. 中国腐蚀与防护学报, 2013, 33(4): 331-338.
No Suggested Reading articles found!