Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (2): 151-155    DOI: 10.11902/1005.4537.2014.081
Current Issue | Archive | Adv Search |
Corrosion Behavior of Galvanized Steel in Simulated Ocean Atmosphere
ZHONG Xizhou1, WANG Zhenyao1(), LIU Yanjie1, WANG Binbin1, BAI Fang2, DOU Zhihong2
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. Shenyang Rustproof Packaging Material Co. Ltd., Shenyang 110033, China
Download:  HTML  PDF(3472KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A alternate salt-spray/dry accelerated corrosion facility was set up to simulate the corrosive ocean atmosphere and then with which the corrosion behavior of galvanized steel was studied by means of electrochemical measurement, XRD, SEM and EDAX analysis. The results show that the corrosion resistance of galvanized steel varied with the progress of corrosion process, which declined firstly at the beginning stage, then ascended in the intermediary stage and declined again in the final stage. Correspondingly a yellow rust composed mainly of α-FeOOH appeared firstly, which induced positive effect on the corrosion resistance of galvanized steel, later corrosion products γ-FeOOH and β-FeOOH successively appeared, which induced negative effect on the corrosion resistance of galvanized steel.

Key words:  galvanized steel      atmospheric corrosion      corrosion behavior      salt-spray/dry accelerated test     
Received:  11 June 2014     
ZTFLH:  TG172  

Cite this article: 

ZHONG Xizhou, WANG Zhenyao, LIU Yanjie, WANG Binbin, BAI Fang, DOU Zhihong. Corrosion Behavior of Galvanized Steel in Simulated Ocean Atmosphere. Journal of Chinese Society for Corrosion and protection, 2015, 35(2): 151-155.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.081     OR     https://www.jcscp.org/EN/Y2015/V35/I2/151

Fig.1  Images of galvanized steel after corroded for 24 h (a), 48 h (b), 96 h (c), 192 h (d) and 240 h (e)
Fig.2  Polarization curves of galvanized steel after corroded for different time
Fig.3  Nyquist diagrams of galvanized steel after corroded for different time (a) and the magnified image of square area in Fig.3a (b)
Fig.4  Equivalent circuit diagram of galvanized steel after corroded for 24, 48 and 240 h
Fig.5  Equivalent circuit diagram of galvanized steel after corroded for 96 and 192 h
Corrosion time / h Rct / Ωcm2 Rr2 / Ωcm2 Rr1 / Ωcm2 Rs / Ωcm2 Qr2 / Fcm-2 Qr1 / Fcm-2 Qct / Fcm-2
24 816.1 40.35 --- 11.050 1.585×10-3 --- 2.41×10-4
48 509.2 11.99 --- 9.611 2.830×10-3 --- 2.41×10-4
96 1.38×104 129.10 43.25 9.118 5.820×10-4 6.70×10-4 7.86×10-4
192 3156 360.50 94.31 7.442 9.520×10-4 6.94×10-4 1.21×10-3
240 670.4 87.32 --- 11.090 1.007×10-2 --- 2.90×10-3
Table 1  Fitting parameters of EIS of galvanized steel after corroded for 24, 48, 9, 192 and 240 h
Fig.6  Resistances of inner rust layer in the function of time
Fig.7  Cross sections and corresponding EDAX line scannings of galvanized steel after corroded for 24 h (a), 48 h (b), 96 h (c), 192 h (d) and 240 h (e)
Fig.8  XRD spectra of corrosion products of galvanized steel corroded for various time
[1] Cao C N. The Nature Environment Corrosion of Materials in China[M]. Beijing: Chemical Industry Press, 2005
(曹楚南. 中国材料的自然环境腐蚀[M]. 北京: 化学工业出版社, 2005)
[2] Ma Y T, Liu Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content[J]. Corros. Sci., 2009, 51(10): 997
[3] Lin C, Li X G, Zhao Q. The effect of SO2 on atmospheric corrosion of carbon steel in the initial stage[J]. Equip. Environ. Eng., 2007, 4(6): 13
(林翠, 李晓刚, 赵晴. SO2在碳钢初期大气腐蚀中的作用[J]. 装备环境工程, 2007, 4(6): 13)
[4] Castano J G, Botero C A, Restrepo A H, et al. Atmospheric corrosion of carbon steel in colombia[J]. Corros. Sci., 2009, 52(3): 216
[5] Ye T, Zhao D W, Li J, et al. Study on the effects of air pollution on corrosion of carbon steel[J]. J. Chongqing Jianzhu Univ., 2005, 27(1): 80
(叶堤, 赵大为, 李娟等. 大气污染对碳钢的腐蚀影响研究[J]. 重庆建筑大学学报, 2005, 27(1): 80)
[6] Cai J P, Ke W. Application of neural networks to atmospheric corrosion of carbon steel and low alloy steels[J]. J. Chin. Soc. Corros. Prot., 1997, 17(4): 303
(蔡建平, 柯伟. 应用人工神经网络预测碳钢、低合金钢的大气腐蚀[J]. 中国腐蚀与防护学报, 1997, 17(4): 303)
[7] Odnevall I, Leygraf C. Formation of NaZn4(SO4)Cl(OH)66H2O in a marine atmosphere[J]. Corros. Sci., 1993, 34(8): 1213
[8] Wallinder O, Leygraf C. Atmospheric corrosion of zinc-based materials: runoff rate, chemical speciation and ecotoxicity effects[J]. Corros. Sci., 2001, 43(5): 809
[9] Ma Y T, Liu Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content[J]. Corros. Sci., 2009, 51(10): 997
[10] Ma Y T, Li Y, Wang F H. The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment[J]. Mater. Chem. Phys., 2008, 112(9): 844
[1] HUANG Tao, XU Chunxiang, YANG Lijing, LI Fuxia, JIA Qinggong, KUAN Jun, ZHANG Zhengwei, WU Xiaofeng, WANG Zhongqi. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[2] CAO Jingyi, FANG Zhigang, LI Liang, FENG Yafei, WANG Xingqi, SHOU Haiming, YANG Yange, CHU Guangzhe, YIN Wenchang. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Fresh Water and Salt Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[3] CAO Jingyi, FANG Zhigang, FENG Yafei, LI Liang, YANG Yange, SHOU Haiming, WANG Xingqi, ZANG Bolin. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[4] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[5] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[6] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[7] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[8] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[9] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[10] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[11] SU Xiaohong,HU Huie,KONG Xiaodong. Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[12] PAN Chengcheng,MA Chao,XIA Dahai. Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[13] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[14] WANG Qinying,PEI Rui,XI Yuchen. Erosion-corrosion Behavior of Laser-clad Ni-based Alloy Coating on Q235 Carbon Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[15] GUO Tieming,ZHANG Yanwen,QIN Junshan,SONG Zhitao,DONG Jianjun. Corrosion Behavior of Q345q Bridge Steel in Three Simulated Atmospheres[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
No Suggested Reading articles found!