Please wait a minute...
中国腐蚀与防护学报  2009, Vol. 29 Issue (5): 333-338    DOI: 1005-4537(2009)05-0333-06
  研究报告 本期目录 | 过刊浏览 |
咪唑啉型缓蚀剂中疏水基团对N80钢在CO2饱和的3%NaCl溶液中的缓蚀性能影响
刘瑕1;2;郑玉贵1
1. 中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
2. 沈阳化工学院应用化学学院 沈阳 110142
THE EFFECT OF HYDROPHOBIC GROUP ON THE INHIBITION BEHAVIOR OF IMIDAZOLINE FOR CO2 CORROSION OF N80 IN 3\%NaCl SOLUTION
LIU Xia1;2; ZHENG Yugui1
1. State Key Laboratory for Corrosion and Protection; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
2. Department of Applied Chemistry; Shenyang Institute of Chemical Technology; Shenyang 110142
全文: PDF(2580 KB)  
摘要: 

合成了四种含有不同疏水基团的咪唑啉型缓蚀剂,即正丁基咪唑啉(IM-4)、壬基咪唑啉(IM-9)、十一烷基咪唑啉(IM-11)和十七烷基咪唑啉(IM-17),产物经红外、紫外光谱等进行表征。在静态及动态条件下,用失重法、电化学等方法研究各缓蚀剂对N80钢在CO2饱和的3%NaCl溶液中的缓蚀性能。结果表明,静态条件下,缓蚀剂的缓蚀性能与疏水基团的碳链长度、空间位阻及其水溶性有关;在介质流速为5 m/s的动态条件下,缓蚀剂的缓蚀效率显著降低,对缓蚀剂的疏水和屏障作用要求更高。

关键词 CO2腐蚀缓蚀剂咪唑啉疏水基团流动    
Abstract

Four kinds of imidazoline inhibitors with different hydrophobic group i.e. 2-heptadecyl-aminoethyl-imidazoline (IM-17), 2-undecyl-aminoethyl-imidazoline (IM-11), 2-nonyl-aminoethyl-imidazoline (IM-9), 2-butyl-aminoethyl-imidazoline (IM-4) had been synthesized and characterized by IR and UV spectra. The inhibition performance of these imidazoline inhibitors for CO2 corrosion of N80 in 3% NaCl solution was investigated through linear polarization resistance, polarization curve and electrochemical impedance spectroscopy under static and flow conditions. The results showed that the inhibition efficiency under static condition decreased in the order of IM-9>IM-4>IM-11>IM-17, i.e. the inhibition efficiency was related with both the solubility and the length of carbon chain of hydrophobic group of imidazolines. In contrast, the inhibition efficiency at 5 m/s decreased in the order of IM-9>IM-1>IM-17>IM-4, and solution flow (5 m/s) dramatically worsened the inhibition performance of imidazolines.

Key wordsCarbon dioxide corrosion    Corrosion inhibitor    Imidazoline    Hydrophobic group    Flow condition
收稿日期: 2008-05-06     
ZTFLH: 

TG174.42

 
基金资助:

国家自然科学基金项目(50271078)资助

通讯作者: 刘瑕     E-mail: ygzheng@imr.ac.cn
Corresponding author: Liu Xia     E-mail: ygzheng@imr.ac.cn
作者简介: 刘瑕,女,1970年生,博士生,研究方向为缓蚀剂的制备及性能

引用本文:

刘瑕 郑玉贵. 咪唑啉型缓蚀剂中疏水基团对N80钢在CO2饱和的3%NaCl溶液中的缓蚀性能影响[J]. 中国腐蚀与防护学报, 2009, 29(5): 333-338.
LIU Xia. THE EFFECT OF HYDROPHOBIC GROUP ON THE INHIBITION BEHAVIOR OF IMIDAZOLINE FOR CO2 CORROSION OF N80 IN 3\%NaCl SOLUTION. J Chin Soc Corr Pro, 2009, 29(5): 333-338.

链接本文:

https://www.jcscp.org/CN/1005-4537(2009)05-0333-06      或      https://www.jcscp.org/CN/Y2009/V29/I5/333

[1] Wu S L, Cui Z D, He F. Characterization of the surface film formed from carbon dioxide corrosion on N80 steel [J]. Mater.Lett., 2004, 58: 1076-1081
[2] Wu S L, Wu Z D, Cui G X. EIS study of the surface film on the surface of carbon steel from supercritical carbon dioxide corrosion [J] Appl. Surf. Sci., 2004, 228: 17-25
[3] Seala S, Sapre K, Kalea A. Effect of multiphase flow on corrosion of C-steel in presence of inhibitor [J]. Corros. Sci., 2000, 42:1623-1634
[4] Altoe P, Pimenta G, Moulin C F. Evaluation of oilfield corrosion inhibitors in CO2 containing media [J]. Electrochim. Acta,1996, 41 (7-8): 1165-1172
[5] Lo'pez D A, Simison S N, de Sa'nchez S R. The influence of steel microstructure on CO2 corrosion. EIS studies on the inhibition efficiency of benzimidazole [J]. Electrochim. Acta, 2003, 48: 845-854
[6] Cao C. On electrochemical techniques for interface inhibitor research [J]. Corros. Sci., 1996, 38(12): 2073-2082
[7] Ramachandran S, Jovancicevic V. Molecular modeling of the inhibition of mild steel carbon dioxide corrosion by imidazolines [A]. Corrosion /99 [C]. Houston,Texas: NACE, 1999, 17
[8] Edwards A, Osborne C, Webster S, et al. Mechanistic studies of the corrosion inhibitor oleic imidazoline [J]. Corros. Sci., 1993, 36(2): 315-325
[9] Tan Y J, Bailey S, Kinsella B. An investigation of the formation and destruction of corrosion inhibitor films using electrochemical impedance spectroscopy (EIS)[J]. Corros. Sci., 1996,38(9): 1545-1561
[10] Zhang X Y, Ma L M, Du Y L. Inhibition mechanism of imidazoline amide in CO2 solution [J]. Appl. Chem., 1998, 15(6): 21-24
       (张学元, 马利民, 杜元龙. 咪唑啉酰胺在含CO2溶液中的缓蚀机理 [J].应用化学, 1998, 15(6): 21-24)
[11] Mar'a L, Valdez R, Villamisar W, et al. Computational simulations of the molecular structure and corrosion properties of amidoethyl, aminoethyl and hydroxyethyl imidazolines inhibitors [J]. Corros. Sci., 2006, 48: 4053-4064
[12] Suzuki K. The study of inhibitor for sour gas service [J]. Corrosion, 1982, 7: 384-389
[13] Ramachandran S. Self-assembled monolayer mechanism for corrosion inhibition of iron by imidazolines [J].Langmuir, 1996, 12(26): 6419-6428
[14] Jovancicevic V, Ramachandran S. Inhibition of carbon dioxidecorrosion of mild steel by imidazolines and their precursors [J].Corrosion, 1999, 55(5): 449-455
[15] Yang H Y, Chen J J, Cao C N. Study on corrosion and inhibition on mechanism in H2S aqueous solutions [J]. J. Chin. Soc.Corros. Prot., 2002, 22(3): 148-152
       (杨怀玉,陈家坚,曹楚南. H2S水溶液中的腐蚀与缓蚀作用机理的研究[J]. 中国腐蚀与防护学报,2002, 22(3): 148-152)
[16] Guo X P, Fu C Y.Interaction between inhibitor and CO2corrosion production film [D].Qingdao:Inhibitor Committee of Chinese Corrosion and Protection, 2001: 7-l2
       (郭兴蓬,付朝阳. 缓蚀剂和CO$_2$腐蚀产物膜的相互作用 [D]. 青岛:中国腐蚀与防护学会缓蚀剂专业委员会,2001: 7-12)
[17] Dougherty J A, Stergmann D W. The effects of flow on corrosion inhibitors performance [J]. Mater. Performance, 1996,35(4):47-53
[18] Liu X W,Peng F M,Zheng J S, et al. Study of inhibitor for pipeline in oilfield [J]. Mater. Prot., 2000, 33(8):3-5
       (刘小武, 彭芳明,郑家燊等. 输油管线缓蚀剂的研究 [J]. 材料保护, 2000, 33(8):3-5)
[19] Chert Y, Jepson W P. EIS measurement  for corrosion monitoring under multiphase flow condition [J]. Electrochim. Acta, 1999, 44:4453-4464
[20] Wang H B,Hong T,Jepson W P. Characterization of inhibitor and corrosion product film using electrochemical impedance spectroscopy(EIS) [A]. Corrosion/2001 [C]. Houston,Texas: NACE, 2001: 23
[21] Smart J S. The meaning of the api-rp-14-e formula for erosion corrosion in oil and gas production [J]. Corrosion, 1991, paper 468
[22] Zhao L, Teng H K, Yang Y S. Corrosion inhibition approach of oil production systems in offshore oilfields [J]. Mater. Corros., 2004,55(9): 684-688
[23] Jiang X, Luo S Z, Zheng Y G. Study on inhibitor properties of quaternary alkynoxymethyl amine and imidazoline for N80 seamless steel in 3\% NaCl saturated by CO2 [J]. J. Chin. Soc. Corros. Prot.,2004, 24(1): 10-15
       (蒋秀,骆素珍,郑玉贵. 炔氧甲基季胺盐和咪唑啉对N80在饱和CO2的3\%NaCl溶液中的缓蚀性能研究 [J]. 中国腐蚀与防护学报, 2004, 24(1): 10-15)
[24] Jiang X, Zheng Y G, Ke W. Inhibitor properties of quaternary alkynoxymethyl amine under flowing conditions [J]. J. Chin. Soc. Corros.Prot., 2004, 24(4): 234-239
       (蒋秀,郑玉贵,柯伟. 流动条件下炔氧甲基季铵盐的缓蚀性能研究 [J]. 中国腐蚀与防护学报,2004, 24(4): 234-239)
[25] Cao C N. Corrosion Electrochemistry [M]. Beijing: Chemical Industry Press, 1994
      (曹楚南. 腐蚀电化学 [M]. 北京:化学工业出版社, 1994 )
[26] Yang H Y, Chen J J. Cao C N. Study on corrosion and inhibition on mechanism in H2S aqueous solutions [J]. J. Chin. Soc. Corros.Prot., 2001,21(6): 321-327
      (杨怀玉,陈家坚,曹楚南. H2S溶液中的腐蚀与缓蚀作用机理的研究 [J].中国腐蚀与防护学报,2001,21(6): 321-327)

[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[4] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[5] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[6] 伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[7] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[8] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[9] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[10] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[11] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[12] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[13] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[14] 叶赛, MasoumehMoradi, 宋振纶, 胡方勤, 孙朝晖, 龙剑平. 杀鱼假交替单胞菌对模拟海水流动环境下Q235碳钢腐蚀的抑制行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 174-182.
[15] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.