Please wait a minute...
中国腐蚀与防护学报  2026, Vol. 46 Issue (1): 60-70     CSTR: 32134.14.1005.4537.2025.189      DOI: 10.11902/1005.4537.2025.189
  增材制造与腐蚀专题 本期目录 | 过刊浏览 |
海洋环境中铜绿假单胞菌对增材制造Al-Mg-Sc-Zr合金腐蚀行为影响研究
张俊男1, 彭灿2(), 付琦1(), 张亮2, 宋光铃1()
1.南方科技大学海洋科学与工程系 深圳 518055
2.深圳职业技术大学智能制造技术研究院 深圳 518055
Influence of Pseudomonas Aeruginosa on Corrosion Behavior of Additively Manufactured Al-Mg-Sc-Zr Alloy in Marine Environment
ZHANG Junnan1, PENG Can2(), FU Qi1(), ZHANG Liang2, SONG Guangling1()
1.Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
2.Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
引用本文:

张俊男, 彭灿, 付琦, 张亮, 宋光铃. 海洋环境中铜绿假单胞菌对增材制造Al-Mg-Sc-Zr合金腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 60-70.
Junnan ZHANG, Can PENG, Qi FU, Liang ZHANG, Guangling SONG. Influence of Pseudomonas Aeruginosa on Corrosion Behavior of Additively Manufactured Al-Mg-Sc-Zr Alloy in Marine Environment[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 60-70.

全文: PDF(15543 KB)   HTML
摘要: 

采用选区激光熔化(SLM)技术制备Al-Mg-Sc-Zr合金,系统研究其在铜绿假单胞菌(P. aeruginosa)作用下的微生物腐蚀行为。通过荧光显微镜跟踪观察菌体在合金表面的附着与分布状态,并统计14 d内细胞数量的动态变化。结合电化学测试、扫描电子显微镜(SEM)、白光干涉仪、X射线光电子能谱(XPS)等手段,对合金在无菌与接菌条件下的腐蚀特性及其机制进行了深入分析。结果显示,该合金在无菌环境中表现出优异的耐蚀性,表面基本无明显点蚀坑;而在接菌条件下,P. aeruginosa易在表面附着并诱发严重的局部腐蚀。其主要机制在于细菌通过从合金中提取Al和Mg的电子维持代谢活动,同时非均匀分布的生物膜形成氧浓差电池,加剧了局部腐蚀的发展,显著降低了合金的腐蚀稳定性。

关键词 增材制造铝合金铜绿假单胞菌微生物腐蚀    
Abstract

A bulk Al-Mg-Sc-Zr alloy was fabricated by using selective laser melting (SLM) technique. Then its corrosion behavior of the alloy was investigated by immersion in Pseudomonas aeruginosa (P. aeruginosa) inoculated artificial seawater for 14 d, meanwhile the distribution of P. aeruginosa on the alloy surface was observed via fluorescence microscopy, and the trend in cell population changes was statistically analyzed. The corrosion behavior and mechanism of the alloy in both sterile and inoculated environments were investigated through electrochemical tests, scanning electron microscopy (SEM), white light interferometry, and X-ray photoelectron spectroscopy (XPS). The results demonstrated that the Al-Mg-Sc-Zr alloy exhibited excellent corrosion resistance in the sterile group, with virtually no observable pitting on the surface. In contrast, in the inoculated group, P. aeruginosa could adhere to the alloy surface and induced severe localized corrosion. P. aeruginosa could extract electrons from Al and Mg elements to sustain its metabolic activities, while oxygen concentration cells were formed inside the heterogeneous biofilm, significantly exacerbating the development of localized corrosion and reducing the corrosion stability of the alloy.

Key wordsadditive manufacturing    Al-alloy    Pseudomonas aeruginosa    microbiologically influenced corrosion
收稿日期: 2025-06-17      32134.14.1005.4537.2025.189
ZTFLH:  TG174  
基金资助:国家自然科学基金(52250710159);中国博士后科学基金(2024M751292)
通讯作者: 彭灿,E-mail:pengcan@szpu.edu.cn,研究方向为金属腐蚀与防护;
付琦,E-mail:15303927931@163.com,研究方向为金属腐蚀与防护;
宋光铃,E-mail:songgl@sustech.edu.cn,研究方向为金属腐蚀与防护
作者简介: 张俊男,2000年出生,2023年本科毕业于江西科技师范大学,现在南方科技大学攻读硕士学位。主要研究方向为海洋环境中碳钢和铝合金等金属生物污损及腐蚀机理。目前,以第一作者发表SCI论文1篇,中文核心论文1篇,作大会报告1次。
彭灿,1995年出生,本科毕业于中北大学,2023年毕业于中国科学技术大学,获博士学位。曾在弗迪电池研究院有限公司担任主任结构工程师,现就职于深圳职业技术大学,博士后。主要研究方向为铝合金在海洋环境中的腐蚀机理,揭示了6061、Al-Mg-Sc-Zr 等铝合金在干湿交替海洋大气环境下氧化膜的破损与修复机制。目前,以第一作者在Corros. Sci.等期刊发表SCI论文5篇,作大会报告1次。
付琦,1996年出生,本科毕业于郑州大学,2023年毕业于中国科学技术大学,获博士学位。曾在比亚迪汽车工业有限公司担任主任研发工程师,现就职于南方科技大学,博士后。主要聚焦土壤及海洋微生物对碳钢、铝合金和镁合金等金属污损、腐蚀及应力腐蚀机理影响的相关研究工作。目前,以第一作者/通讯作者在Corros. Sci. 等期刊发表SCI论文10篇,作大会报告4次。正在主持中国博士后科学基金面上项目、国家资助博士后研究人员计划C档。获得2024年南方科技大学校长卓越博士后项目。
宋光铃,1965年出生,本科毕业于北京航空航天大学,在中科院金属所获得第一个博士学位,澳洲昆士兰大学获得第二个博士学位。研究领域主要包括材料在各种环境中的失效和电化学技术。他在电化学理论和测量技术,轻金属腐蚀与防护,不锈钢钝化,自然环境(海洋、土壤、大气)的腐蚀性,涂层技术、评价和防污,表面功能化和智能化、电化学催化和电极材料、光电化学等领域工作多年。迄今已发表290多篇学术杂志论文,80多篇(含特邀、主旨报告在内的)国际学术报告和会议论文,3本专著、19篇专著章节、25项美国专利、70多篇工业报告。所发表的论文,迄今已被SCI 引用2万多次, SCI 的H-index 已达到66。曾获2000年Thomson top 1%的高引用卡,于2020、2021、2022年被Elsevier 列为中国高被引学者之一;2020年和2022 年被斯坦福大学排入能源、材料、化学领域全球前2%顶尖科学家榜单之中。曾获数个优秀论文奖、材料商业化奖等。现任《中国腐蚀与防护学报》,Journal of Materials Science and Technology,Journal of Mg and Alloys,Anti-corrosion Methods and Materials,Frontiers in Materials-Environmental degradation of Materials等学术杂志编委、副主编、专业主编。
图1  Al-Mg-Sc-Zr合金成形过程示意图
图2  Al-Mg-Sc-Zr合金的金相图像及SEM二次电子图像
图3  测试溶液的pH值、细胞含量变化以及试样表面的细菌荧光图像
图4  14 d实验期间无菌组与接菌组中合金的OCP值和EIS数据
Conditiont / dRs / Ω·cm2Qf / 10-6 S·cm-2·s nRf / 103 Ω·cm2Qdl / 10-6 S·cm-2·s nRct / 103 Ω·cm2
Control18.3887.13612.210.500767.1
38.6976.5166.6240.79512360
58.7417.1685.1291.088998.6
78.4259.3026.4810.875485.3
108.70215.173.3840.826614.9
148.66414.592.3801.0001834
P. aeruginosa17.52311.3533.301.34842.66
38.0149.8170.02046.085171.5
58.3869.7040.03456.827243.6
78.2929.5270.03497.767238
108.52410.5000.04428.158386.6
148.48512.550.05897.692791.3
表1  Al-Mg-Sc-Zr合金在非生物和生物介质中EIS谱的电化学参数
图5  试样在无菌和接菌环境中浸泡14 d后的动电位极化曲线
ConditionEcorr vs. SCE / VIcorr / 10-8 A·cm-2
Control-1.0982.08
NRB-1.1476.78
表2  试样在无菌和接菌环境中通过拟合动电位极化曲线所得到的相关电化学参数
图6  浸泡14 d后试样表面的SEM形貌与EDS面扫描元素分布图
图7  去除腐蚀产物后试样表面腐蚀形貌
图8  浸泡14 d后Al-Mg-Sc-Zr合金表面的XPS图谱
图9  P. aeruginosa诱导Al-Mg-Sc-Zr合金的腐蚀示意图
[1] Song X W, Bai M M, Chen N N, et al. Effect of Aspergillus aculeatus on corrosion behavior of 5A02 Al-alloy in coastal atmospheric environment of Hainan Island [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 631
[1] 宋晓稳, 白苗苗, 陈娜娜 等. 海南滨海大气环境中棘孢曲霉对铝合金腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2025, 45: 631
doi: 10.11902/1005.4537.2024.191
[2] Xia D H, Ji Y Y, Mao Y C, et al. Localized corrosion mechanism of 2024 aluminum alloy in a simulated dynamic seawater/air interface [J]. Acta Metall. Sin., 2023, 59: 297
doi: 10.11900/0412.1961.2022.00196
[2] 夏大海, 计元元, 毛英畅 等. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制 [J]. 金属学报, 2023, 59: 297
doi: 10.11900/0412.1961.2022.00196
[3] Duan T G, Li Z, Peng W S, et al. Corrosion characteristics of 5A06 Al-alloy exposed in natural deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 352
[3] 段体岗, 李 祯, 彭文山 等. 深海环境5A06铝合金腐蚀行为与表面特性 [J]. 中国腐蚀与防护学报, 2023, 43: 352
doi: 10.11902/1005.4537.2022.102
[4] Deng C M, Liu Z, Xia D H, et al. Localized corrosion mechanism of 5083-H111 Al alloy in simulated dynamic seawater zone [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 683
[4] 邓成满, 刘 喆, 夏大海 等. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制 [J]. 中国腐蚀与防护学报, 2023, 43: 683
doi: 10.11902/1005.4537.2023.140
[5] Luo B H, Bai Z H. Development of high-performance aluminum alloys [J]. Ordn. Mater. Sci. Eng., 2002, 25: 59
[5] 罗兵辉, 柏振海. 高性能铝合金研究进展 [J]. 兵器材料科学与工程, 2002, 25: 59
[6] Zhang X M, Deng Y L, Zhang Y. Development of high strength aluminum alloys and processing techniques for the materials [J]. Acta Metall. Sin., 2015, 51: 257
doi: 10.11900/0412.1961.2014.00406
[6] 张新明, 邓运来, 张 勇. 高强铝合金的发展及其材料的制备加工技术 [J]. 金属学报, 2015, 51: 257
doi: 10.11900/0412.1961.2014.00406
[7] Zhang X M, Liu S D. Aerocraft aluminum alloys and their materials processing [J]. Mater. China, 2013, 32: 39
[7] 张新明, 刘胜胆. 航空铝合金及其材料加工 [J]. 中国材料进展, 2013, 32: 39
[8] Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys [J]. Mater. Des., 2014, 56: 862
doi: 10.1016/j.matdes.2013.12.002
[9] Lin X, Huang W D. Laser additive manufacturing of high-performance metal components [J]. Sci. China Inf. Sci., 2015, 45: 1111
[9] 林 鑫, 黄卫东. 高性能金属构件的激光增材制造 [J]. 中国科学: 信息科学, 2015, 45: 1111
[10] Wang H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2690
[10] 王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题 [J]. 航空学报, 2014, 35: 2690
doi: 10.7527/S1000-6893.2014.0174
[11] Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: Materials, processes and mechanisms [J]. Int. Mater. Rev., 2012, 57: 133
doi: 10.1179/1743280411Y.0000000014
[12] Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
doi: 10.1016/j.actamat.2016.07.019
[13] Yan H, Wang S X, Li X F, et al. Study on the friction and wear properties of selective laser melted Al-Cu-Mg alloy [J]. Powder Metall. Ind., 2023, 33(1): 17
[13] 闫 浩, 王世鑫, 李晓峰 等. SLM成形Al-Cu-Mg合金的摩擦磨损性能 [J]. 粉末冶金工业, 2023, 33(1): 17
[14] Li R D, Wang M B, Yuan T C, et al. Selective laser melting of a novel Sc and Zr modified Al-6.2 Mg alloy: Processing, microstructure, and properties [J]. Powder Technol., 2017, 319: 117
doi: 10.1016/j.powtec.2017.06.050
[15] Spierings A B, Dawson K, Kern K, et al. SLM-processed Sc- and Zr-modified Al-Mg alloy: Mechanical properties and microstructural effects of heat treatment [J]. Mater. Sci. Eng., 2017, 701A: 264
[16] Yang K V, Shi Y J, Palm F, et al. Columnar to equiaxed transition in Al-Mg(-Sc)-Zr alloys produced by selective laser melting [J]. Scr. Mater., 2018, 145: 113
doi: 10.1016/j.scriptamat.2017.10.021
[17] Wang M B, Li R D, Yuan T C, et al. Microstructures and mechanical property of AlMgScZrMn-a comparison between selective laser melting, spark plasma sintering and cast [J]. Mater. Sci. Eng., 2019, 756A: 354
[18] Qi P, Zeng Y, Zhang D, et al. The biofilm-metal interface: A hotspot for microbiologically influenced corrosion [J]. Cell Rep. Phys. Sci., 2025, 6: 102500
[19] Arroussi M, Jia Q, Bai C G, et al. Inhibition effect on microbiologically influenced corrosion of Ti-6Al-4V-5Cu alloy against marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2022, 109: 282
doi: 10.1016/j.jmst.2021.08.084
[20] Xu D K, Xia J, Zhou E Z, et al. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm [J]. Bioelectrochemistry, 2017, 113: 1
doi: 10.1016/j.bioelechem.2016.08.001
[21] Xu D K, Zhou E Z, Zhao Y, et al. Enhanced resistance of 2205 Cu-bearing duplex stainless steel towards microbiologically influenced corrosion by marine aerobic Pseudomonas aeruginosa biofilms [J]. J. Mater. Sci. Technol., 2018, 34: 1325
doi: 10.1016/j.jmst.2017.11.025
[22] Zhu L Y, Wu J J, Zhang D, et al. Influence of the α fraction on 2205 duplex stainless steel corrosion affected by Pseudomonas aeruginosa [J]. Corros. Sci., 2021, 193: 109877
doi: 10.1016/j.corsci.2021.109877
[23] Huang L Y, Chang W W, Zhang D W, et al. Acceleration of corrosion of 304 stainless steel by outward extracellular electron transfer of Pseudomonas aeruginosa biofilm [J]. Corros. Sci., 2022, 199: 110159
doi: 10.1016/j.corsci.2022.110159
[24] Qian H C, Chang W W, Liu W L, et al. Investigation of microbiologically influenced corrosion inhibition of 304 stainless steel by D-cysteine in the presence of Pseudomonas aeruginosa [J]. Bioelectrochemistry, 2022, 143: 107953
doi: 10.1016/j.bioelechem.2021.107953
[25] Lekbach Y, Xu D K, El Abed S, et al. Mitigation of microbiologically influenced corrosion of 304L stainless steel in the presence of Pseudomonas aeruginosa by Cistus ladanifer leaves extract [J]. Int. Biodeterior. Biodegrad., 2018, 133: 159
doi: 10.1016/j.ibiod.2018.07.003
[26] Lekbach Y, Li Z, Xu D K, et al. Salvia officinalis extract mitigates the microbiologically influenced corrosion of 304L stainless steel by Pseudomonas aeruginosa biofilm [J]. Bioelectrochemistry, 2019, 128: 193
doi: S1567-5394(19)30005-2 pmid: 31004913
[27] Yu M, Zhang H J, Tian Y, et al. Role of marine Bacillus subtilis and Pseudomonas aeruginosa in cavitation erosion behaviour of 316L stainless steel [J]. Wear, 2023, 514-515: 204593
doi: 10.1016/j.wear.2022.204593
[28] Jia R, Yang D Q, Xu D K, et al. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm [J]. Bioelectrochemistry, 2017, 118: 38
doi: S1567-5394(17)30169-X pmid: 28715664
[29] Jia R, Yang D Q, Xu J, et al. Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation [J]. Corros. Sci., 2017, 127: 1
doi: 10.1016/j.corsci.2017.08.007
[30] Dou W W, Pu Y N, Gu T Y, et al. Biocorrosion of copper by nitrate reducing Pseudomonas aeruginosa with varied headspace volume [J]. Int. Biodeterior. Biodegrad., 2022, 171: 105405
doi: 10.1016/j.ibiod.2022.105405
[31] Pu Y N, Dou W W, Gu T Y, et al. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2020, 47: 10
doi: 10.1016/j.jmst.2020.02.008
[32] Ramírez C G, Monsalve A, Montero C, et al. Microbiologically influenced corrosion of Al-Cu-Li alloy by Pseudomonas aeruginosa [J]. J. Mater. Res. Technol., 2025, 36: 5286
doi: 10.1016/j.jmrt.2025.04.188
[33] Cabrera-Correa L, González-Rovira L, de Dios López-Castro J, et al. Pitting and intergranular corrosion of Scalmalloy® aluminium alloy additively manufactured by Selective Laser Melting (SLM) [J]. Corros. Sci., 2022, 201: 110273
doi: 10.1016/j.corsci.2022.110273
[34] Zhang H, Gu D D, Dai D H, et al. Influence of scanning strategy and parameter on microstructural feature, residual stress and performance of Sc and Zr modified Al-Mg alloy produced by selective laser melting [J]. Mater. Sci. Eng., 2020, 788A: 139593
[35] Liang Y X, Li G A, Liu L, et al. Corrosion behavior of Al-6.8Zn-2.2Mg-Sc-Zr alloy with high resistance to intergranular corrosion [J]. J. Mater. Res. Technol., 2023, 24: 7552
doi: 10.1016/j.jmrt.2023.05.017
[36] Fu Q, Xu J, Wei B X, et al. Biologically competitive effect of Desulfovibrio desulfurican and Pseudomonas stutzeri on corrosion of X80 pipeline steel in the Shenyang soil solution [J]. Bioelectrochemistry, 2022, 145: 108051
doi: 10.1016/j.bioelechem.2022.108051
[37] Fu Q, Song G L, Yao X R. Biofouling and corrosion of magnesium alloys WE43 and AM60 by Chlorella vulgaris in artificial seawater [J]. Corros. Sci., 2025, 250: 112884
doi: 10.1016/j.corsci.2025.112884
[38] Hollmann B, Perkins M, Chauhan V M, et al. Fluorescent nanosensors reveal dynamic pH gradients during biofilm formation [J]. npj Biofilms Microbiomes, 2021, 7: 50
doi: 10.1038/s41522-021-00221-8
[39] Kolics A, Besing A S, Baradlai P, et al. Effect of pH on thickness and ion content of the oxide film on aluminum in NaCl media [J]. J. Electrochem. Soc., 2001, 148: B251
doi: 10.1149/1.1376118
[40] Gu T Y. Theoretical modeling of the possibility of acid producing bacteria causing fast pitting biocorrosion [J]. J. Microb. Biochem. Technol., 2014, 6: 068
[1] 兰博韬, 吴斌, 明洪亮, 王俭秋, 韩恩厚. 选区激光熔化奥氏体不锈钢高温高压水中应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2026, 46(1): 1-14.
[2] 戴念维, 窦欣懿, 刘华剑, 冷滨. 增材制造合金在核能领域应用中的腐蚀研究进展[J]. 中国腐蚀与防护学报, 2026, 46(1): 15-24.
[3] 周丽, 曹晓蝶, 来佑彬, 丁旺旺, 韦博鑫, 吴嘉俊. 热处理工艺对增材制造金属零件腐蚀行为影响的研究进展[J]. 中国腐蚀与防护学报, 2026, 46(1): 37-48.
[4] 衣俊达, 冷傲, 宫得伦, 韦博鑫. 低模量耐腐蚀亚稳 β 钛合金的电子束增材制造与性能研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 49-59.
[5] 祝丁丁, 赵希雅, 张晓美, 梅子期, 逯文君, 王帅. 增材制造与铸造钛铝合金的微观组织及高温氧化行为对比研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 71-80.
[6] 李柯萱, 王义朋, 廖伯凯. 电弧送丝增材、激光选区熔化增材和传统TC4钛合金钝化行为的对比研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 186-192.
[7] 庞曰艺, 张立波, 宁方强, 赵志坡, 闫宏, 刘佳. δ-铁素体对增材制造304L不锈钢液态铅铋腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2026, 46(1): 193-199.
[8] 陈思敏, 练龙江, 黄延淞, 曾兰香, 雷冰, 孟国哲. 乙二醇-水冷媒中Cu-Al电偶腐蚀行为及反应机制研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 299-307.
[9] 王得, 张璠, 王兴奇, 张贺新, 赵成志, 杨延格. 单组分氟碳改性环氧涂层对碳钢和铝合金长期防腐性能的对比研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1549-1562.
[10] 李雨情, 张铁志, 黄兴林, 孙振美, 张怡, 尹衍升. 耐压海乳杆菌对2205双相不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1619-1626.
[11] 邓艳, 彭子飘, 刘毅超, 钟显康. 一种新型含铜钛合金的制备与抗菌性能研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1649-1658.
[12] 李瓒龙, 颜晴, 满成. 加压载荷和摩擦频率对7075铝合金磨损腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1669-1678.
[13] 阮智邦, 魏仕轩, 王树鹏, 吕正平, 李格升, 李燚周. 中性氯化钠溶液中咪唑啉磷酸酯对7075铝合金电偶腐蚀抑制行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1734-1740.
[14] 杨宝齐, 闫茂成, 史显波, 高博文. 新型耐微生物腐蚀油管钢的硫酸盐还原菌腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1755-1763.
[15] 夏大海, 潘成成, 郭玉杰, 胡文彬, TRIBOLLET Bernard. EIS研究7050铝合金在NaCl溶液空蚀作用下的界面状态与腐蚀机制[J]. 中国腐蚀与防护学报, 2025, 45(5): 1196-1204.