|
|
|
| 海洋环境中铜绿假单胞菌对增材制造Al-Mg-Sc-Zr合金腐蚀行为影响研究 |
张俊男1, 彭灿2( ), 付琦1( ), 张亮2, 宋光铃1( ) |
1.南方科技大学海洋科学与工程系 深圳 518055 2.深圳职业技术大学智能制造技术研究院 深圳 518055 |
|
| Influence of Pseudomonas Aeruginosa on Corrosion Behavior of Additively Manufactured Al-Mg-Sc-Zr Alloy in Marine Environment |
ZHANG Junnan1, PENG Can2( ), FU Qi1( ), ZHANG Liang2, SONG Guangling1( ) |
1.Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China 2.Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518055, China |
引用本文:
张俊男, 彭灿, 付琦, 张亮, 宋光铃. 海洋环境中铜绿假单胞菌对增材制造Al-Mg-Sc-Zr合金腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 60-70.
Junnan ZHANG,
Can PENG,
Qi FU,
Liang ZHANG,
Guangling SONG.
Influence of Pseudomonas Aeruginosa on Corrosion Behavior of Additively Manufactured Al-Mg-Sc-Zr Alloy in Marine Environment[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 60-70.
| [1] |
Song X W, Bai M M, Chen N N, et al. Effect of Aspergillus aculeatus on corrosion behavior of 5A02 Al-alloy in coastal atmospheric environment of Hainan Island [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 631
|
| [1] |
宋晓稳, 白苗苗, 陈娜娜 等. 海南滨海大气环境中棘孢曲霉对铝合金腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2025, 45: 631
doi: 10.11902/1005.4537.2024.191
|
| [2] |
Xia D H, Ji Y Y, Mao Y C, et al. Localized corrosion mechanism of 2024 aluminum alloy in a simulated dynamic seawater/air interface [J]. Acta Metall. Sin., 2023, 59: 297
doi: 10.11900/0412.1961.2022.00196
|
| [2] |
夏大海, 计元元, 毛英畅 等. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制 [J]. 金属学报, 2023, 59: 297
doi: 10.11900/0412.1961.2022.00196
|
| [3] |
Duan T G, Li Z, Peng W S, et al. Corrosion characteristics of 5A06 Al-alloy exposed in natural deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 352
|
| [3] |
段体岗, 李 祯, 彭文山 等. 深海环境5A06铝合金腐蚀行为与表面特性 [J]. 中国腐蚀与防护学报, 2023, 43: 352
doi: 10.11902/1005.4537.2022.102
|
| [4] |
Deng C M, Liu Z, Xia D H, et al. Localized corrosion mechanism of 5083-H111 Al alloy in simulated dynamic seawater zone [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 683
|
| [4] |
邓成满, 刘 喆, 夏大海 等. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制 [J]. 中国腐蚀与防护学报, 2023, 43: 683
doi: 10.11902/1005.4537.2023.140
|
| [5] |
Luo B H, Bai Z H. Development of high-performance aluminum alloys [J]. Ordn. Mater. Sci. Eng., 2002, 25: 59
|
| [5] |
罗兵辉, 柏振海. 高性能铝合金研究进展 [J]. 兵器材料科学与工程, 2002, 25: 59
|
| [6] |
Zhang X M, Deng Y L, Zhang Y. Development of high strength aluminum alloys and processing techniques for the materials [J]. Acta Metall. Sin., 2015, 51: 257
doi: 10.11900/0412.1961.2014.00406
|
| [6] |
张新明, 邓运来, 张 勇. 高强铝合金的发展及其材料的制备加工技术 [J]. 金属学报, 2015, 51: 257
doi: 10.11900/0412.1961.2014.00406
|
| [7] |
Zhang X M, Liu S D. Aerocraft aluminum alloys and their materials processing [J]. Mater. China, 2013, 32: 39
|
| [7] |
张新明, 刘胜胆. 航空铝合金及其材料加工 [J]. 中国材料进展, 2013, 32: 39
|
| [8] |
Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys [J]. Mater. Des., 2014, 56: 862
doi: 10.1016/j.matdes.2013.12.002
|
| [9] |
Lin X, Huang W D. Laser additive manufacturing of high-performance metal components [J]. Sci. China Inf. Sci., 2015, 45: 1111
|
| [9] |
林 鑫, 黄卫东. 高性能金属构件的激光增材制造 [J]. 中国科学: 信息科学, 2015, 45: 1111
|
| [10] |
Wang H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2690
|
| [10] |
王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题 [J]. 航空学报, 2014, 35: 2690
doi: 10.7527/S1000-6893.2014.0174
|
| [11] |
Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: Materials, processes and mechanisms [J]. Int. Mater. Rev., 2012, 57: 133
doi: 10.1179/1743280411Y.0000000014
|
| [12] |
Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
doi: 10.1016/j.actamat.2016.07.019
|
| [13] |
Yan H, Wang S X, Li X F, et al. Study on the friction and wear properties of selective laser melted Al-Cu-Mg alloy [J]. Powder Metall. Ind., 2023, 33(1): 17
|
| [13] |
闫 浩, 王世鑫, 李晓峰 等. SLM成形Al-Cu-Mg合金的摩擦磨损性能 [J]. 粉末冶金工业, 2023, 33(1): 17
|
| [14] |
Li R D, Wang M B, Yuan T C, et al. Selective laser melting of a novel Sc and Zr modified Al-6.2 Mg alloy: Processing, microstructure, and properties [J]. Powder Technol., 2017, 319: 117
doi: 10.1016/j.powtec.2017.06.050
|
| [15] |
Spierings A B, Dawson K, Kern K, et al. SLM-processed Sc- and Zr-modified Al-Mg alloy: Mechanical properties and microstructural effects of heat treatment [J]. Mater. Sci. Eng., 2017, 701A: 264
|
| [16] |
Yang K V, Shi Y J, Palm F, et al. Columnar to equiaxed transition in Al-Mg(-Sc)-Zr alloys produced by selective laser melting [J]. Scr. Mater., 2018, 145: 113
doi: 10.1016/j.scriptamat.2017.10.021
|
| [17] |
Wang M B, Li R D, Yuan T C, et al. Microstructures and mechanical property of AlMgScZrMn-a comparison between selective laser melting, spark plasma sintering and cast [J]. Mater. Sci. Eng., 2019, 756A: 354
|
| [18] |
Qi P, Zeng Y, Zhang D, et al. The biofilm-metal interface: A hotspot for microbiologically influenced corrosion [J]. Cell Rep. Phys. Sci., 2025, 6: 102500
|
| [19] |
Arroussi M, Jia Q, Bai C G, et al. Inhibition effect on microbiologically influenced corrosion of Ti-6Al-4V-5Cu alloy against marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2022, 109: 282
doi: 10.1016/j.jmst.2021.08.084
|
| [20] |
Xu D K, Xia J, Zhou E Z, et al. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm [J]. Bioelectrochemistry, 2017, 113: 1
doi: 10.1016/j.bioelechem.2016.08.001
|
| [21] |
Xu D K, Zhou E Z, Zhao Y, et al. Enhanced resistance of 2205 Cu-bearing duplex stainless steel towards microbiologically influenced corrosion by marine aerobic Pseudomonas aeruginosa biofilms [J]. J. Mater. Sci. Technol., 2018, 34: 1325
doi: 10.1016/j.jmst.2017.11.025
|
| [22] |
Zhu L Y, Wu J J, Zhang D, et al. Influence of the α fraction on 2205 duplex stainless steel corrosion affected by Pseudomonas aeruginosa [J]. Corros. Sci., 2021, 193: 109877
doi: 10.1016/j.corsci.2021.109877
|
| [23] |
Huang L Y, Chang W W, Zhang D W, et al. Acceleration of corrosion of 304 stainless steel by outward extracellular electron transfer of Pseudomonas aeruginosa biofilm [J]. Corros. Sci., 2022, 199: 110159
doi: 10.1016/j.corsci.2022.110159
|
| [24] |
Qian H C, Chang W W, Liu W L, et al. Investigation of microbiologically influenced corrosion inhibition of 304 stainless steel by D-cysteine in the presence of Pseudomonas aeruginosa [J]. Bioelectrochemistry, 2022, 143: 107953
doi: 10.1016/j.bioelechem.2021.107953
|
| [25] |
Lekbach Y, Xu D K, El Abed S, et al. Mitigation of microbiologically influenced corrosion of 304L stainless steel in the presence of Pseudomonas aeruginosa by Cistus ladanifer leaves extract [J]. Int. Biodeterior. Biodegrad., 2018, 133: 159
doi: 10.1016/j.ibiod.2018.07.003
|
| [26] |
Lekbach Y, Li Z, Xu D K, et al. Salvia officinalis extract mitigates the microbiologically influenced corrosion of 304L stainless steel by Pseudomonas aeruginosa biofilm [J]. Bioelectrochemistry, 2019, 128: 193
doi: S1567-5394(19)30005-2
pmid: 31004913
|
| [27] |
Yu M, Zhang H J, Tian Y, et al. Role of marine Bacillus subtilis and Pseudomonas aeruginosa in cavitation erosion behaviour of 316L stainless steel [J]. Wear, 2023, 514-515: 204593
doi: 10.1016/j.wear.2022.204593
|
| [28] |
Jia R, Yang D Q, Xu D K, et al. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm [J]. Bioelectrochemistry, 2017, 118: 38
doi: S1567-5394(17)30169-X
pmid: 28715664
|
| [29] |
Jia R, Yang D Q, Xu J, et al. Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation [J]. Corros. Sci., 2017, 127: 1
doi: 10.1016/j.corsci.2017.08.007
|
| [30] |
Dou W W, Pu Y N, Gu T Y, et al. Biocorrosion of copper by nitrate reducing Pseudomonas aeruginosa with varied headspace volume [J]. Int. Biodeterior. Biodegrad., 2022, 171: 105405
doi: 10.1016/j.ibiod.2022.105405
|
| [31] |
Pu Y N, Dou W W, Gu T Y, et al. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2020, 47: 10
doi: 10.1016/j.jmst.2020.02.008
|
| [32] |
Ramírez C G, Monsalve A, Montero C, et al. Microbiologically influenced corrosion of Al-Cu-Li alloy by Pseudomonas aeruginosa [J]. J. Mater. Res. Technol., 2025, 36: 5286
doi: 10.1016/j.jmrt.2025.04.188
|
| [33] |
Cabrera-Correa L, González-Rovira L, de Dios López-Castro J, et al. Pitting and intergranular corrosion of Scalmalloy® aluminium alloy additively manufactured by Selective Laser Melting (SLM) [J]. Corros. Sci., 2022, 201: 110273
doi: 10.1016/j.corsci.2022.110273
|
| [34] |
Zhang H, Gu D D, Dai D H, et al. Influence of scanning strategy and parameter on microstructural feature, residual stress and performance of Sc and Zr modified Al-Mg alloy produced by selective laser melting [J]. Mater. Sci. Eng., 2020, 788A: 139593
|
| [35] |
Liang Y X, Li G A, Liu L, et al. Corrosion behavior of Al-6.8Zn-2.2Mg-Sc-Zr alloy with high resistance to intergranular corrosion [J]. J. Mater. Res. Technol., 2023, 24: 7552
doi: 10.1016/j.jmrt.2023.05.017
|
| [36] |
Fu Q, Xu J, Wei B X, et al. Biologically competitive effect of Desulfovibrio desulfurican and Pseudomonas stutzeri on corrosion of X80 pipeline steel in the Shenyang soil solution [J]. Bioelectrochemistry, 2022, 145: 108051
doi: 10.1016/j.bioelechem.2022.108051
|
| [37] |
Fu Q, Song G L, Yao X R. Biofouling and corrosion of magnesium alloys WE43 and AM60 by Chlorella vulgaris in artificial seawater [J]. Corros. Sci., 2025, 250: 112884
doi: 10.1016/j.corsci.2025.112884
|
| [38] |
Hollmann B, Perkins M, Chauhan V M, et al. Fluorescent nanosensors reveal dynamic pH gradients during biofilm formation [J]. npj Biofilms Microbiomes, 2021, 7: 50
doi: 10.1038/s41522-021-00221-8
|
| [39] |
Kolics A, Besing A S, Baradlai P, et al. Effect of pH on thickness and ion content of the oxide film on aluminum in NaCl media [J]. J. Electrochem. Soc., 2001, 148: B251
doi: 10.1149/1.1376118
|
| [40] |
Gu T Y. Theoretical modeling of the possibility of acid producing bacteria causing fast pitting biocorrosion [J]. J. Microb. Biochem. Technol., 2014, 6: 068
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|