|
|
|
| 增材制造与铸造钛铝合金的微观组织及高温氧化行为对比研究 |
祝丁丁, 赵希雅, 张晓美, 梅子期, 逯文君, 王帅( ) |
| 南方科技大学机械与能源工程系 深圳 518055 |
|
| Comparative Characterization of Microstructure and High-temperature Oxidation Behavior of Additive Manufacturing and Casting TiAl Alloy |
ZHU Dingding, ZHAO Xiya, ZHANG Xiaomei, MEI Ziqi, LU Wenjun, WANG Shuai( ) |
| Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China |
引用本文:
祝丁丁, 赵希雅, 张晓美, 梅子期, 逯文君, 王帅. 增材制造与铸造钛铝合金的微观组织及高温氧化行为对比研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 71-80.
Dingding ZHU,
Xiya ZHAO,
Xiaomei ZHANG,
Ziqi MEI,
Wenjun LU,
Shuai WANG.
Comparative Characterization of Microstructure and High-temperature Oxidation Behavior of Additive Manufacturing and Casting TiAl Alloy[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 71-80.
| [1] |
Yan H J, Yin R Z, Wang W J, et al. Cyclic oxidation behavior of TiAl alloy with electrodeposited SiO2 coating [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 81
|
| [1] |
严豪杰, 殷若展, 汪文君 等. TiAl合金表面电沉积SiO2涂层抗循环氧化性能研究 [J]. 中国腐蚀与防护学报, 2025, 45: 81
doi: 10.11902/1005.4537.2024.246
|
| [2] |
Zhao Z Q, Yi M, Guo W L, et al. General-purpose neural network potential for Ti-Al-Nb alloys towards large-scale molecular dynamics with ab initio accuracy [J]. Phys. Rev. B, 2024, 110: 184115
doi: 10.1103/PhysRevB.110.184115
|
| [3] |
Dimiduk D M. Gamma titanium aluminide alloys—An assessment within the competition of aerospace structural materials [J]. Mater. Sci. Eng., 1999, 263A: 281
|
| [4] |
Duan B H, Yang Y C, He S Y, et al. History and development of γ-TiAl alloys and the effect of alloying elements on their phase tra-nsformations [J]. J. Alloy. Compd., 2022, 909: 164811
doi: 10.1016/j.jallcom.2022.164811
|
| [5] |
Yamaguchi M. High temperature intermetallics-with particular emphasis on TiAl [J]. Mater. Sci. Technol., 1992, 8: 299
doi: 10.1179/mst.1992.8.4.299
|
| [6] |
Wu X H. Review of alloy and process development of TiAl alloys [J]. Intermetallics, 2006, 14: 1114
doi: 10.1016/j.intermet.2005.10.019
|
| [7] |
Perrut M, Caron P, Thomas M, et al. High temperature materials for aerospace applications: Ni-based superalloys and γ-TiAl alloys [J]. Comptes Rendus Phys., 2018, 19: 657
doi: 10.1016/j.crhy.2018.10.002
|
| [8] |
Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
doi: 10.1016/j.actamat.2016.07.019
|
| [9] |
Soliman H A, Elbestawi M. Titanium aluminides processing by additive manufacturing-a review [J]. Int. J. Adv. Manuf. Technol., 2022, 119: 5583
doi: 10.1007/s00170-022-08728-w
|
| [10] |
Huang D N, Tan Q Y, Zhou Y H, et al. The significant impact of grain refiner on γ-TiAl intermetallic fabricated by laser-based additive manufacturing [J]. Addit. Manuf., 2021, 46: 102172
|
| [11] |
Gao P, Wang Z M, Zeng X Y. Effect of process parameters on morphology, sectional characteristics and crack sensitivity of Ti-40Al-9V-0.5Y alloy single tracks produced by selective laser melting [J]. Int. J. Lightweight Mater. Manuf., 2019, 2: 355
|
| [12] |
Löber L, Schimansky F P, Kühn U, et al. Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy [J]. J. Mater. Process. Technol., 2014, 214: 1852
doi: 10.1016/j.jmatprotec.2014.04.002
|
| [13] |
Shi X Z, Ma S Y, Liu C M, et al. Parameter optimization for Ti-47Al-2Cr-2Nb in selective laser melting based on geometric characteristics of single scan tracks [J]. Opt. Laser Technol., 2017, 90: 71
doi: 10.1016/j.optlastec.2016.11.002
|
| [14] |
Conrad H, Sprecher Jr A F, Cao W D, et al. Electroplasticity—the effect of electricity on the mechanical properties of metals [J]. JOM, 1990, 42: 28
|
| [15] |
Li X, Zhu Q, Hong Y R, et al. Revealing the pulse-induced electroplasticity by decoupling electron wind force [J]. Nat. Commun., 2022, 13: 6503
doi: 10.1038/s41467-022-34333-2
pmid: 36316328
|
| [16] |
Conrad H. Electroplasticity in metals and ceramics [J]. Mater. Sci. Eng., 2000, 287A: 276
|
| [17] |
Li H, Jin F Z, Zhang M Y, et al. Decoupling electroplasticity by temporal coordination design of pulse current loading and straining [J]. Mater. Sci. Eng., 2023, 881A: 145435
|
| [18] |
Zhuang Z T, Yan H J, Xie B, et al. High-temperature oxidation behavior of Ti45Al8.5Nb alloy via liquid-phase fluorination treatment [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 1517
|
| [18] |
庄钊涛, 严豪杰, 谢 冰 等. 液相氟化处理Ti45Al8.5Nb合金高温氧化行为研究 [J]. 中国腐蚀与防护学报, 2025, 45: 1517
doi: 10.11902/1005.4537.2025.040
|
| [19] |
Wu L L, Yin R Z, Chen Z X, et al. Preparation and high temperature oxidation resistance of Zr-SiO2 composite coating on Ti45Al8.5-Nb alloy [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1423
|
| [19] |
吴亮亮, 殷若展, 陈朝旭 等. Ti45Al8.5Nb合金表面Zr-SiO2复合涂层的制备及其抗高温氧化性能研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1423
doi: 10.11902/1005.4537.2024.004
|
| [20] |
Sun T L, Guo Z C, Cao J, et al. Isothermal oxidation behavior of high-Nb-containing TiAl alloys doped with W, B, Y, and C/Si [J]. Corros. Sci., 2023, 213: 110980
doi: 10.1016/j.corsci.2023.110980
|
| [21] |
Yan H J, Xia J J, Wu L K, et al. Hot corrosion behavior of Ti45Al8.5-Nb alloy: Effect of anodization and pre-oxidation [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1531
doi: 10.1007/s40195-022-01380-z
|
| [22] |
Zhang X Y, Li C W, Wu M H, et al. Atypical pathways for lamellar and twinning transformations in rapidly solidified TiAl alloy [J]. Acta Mater., 2022, 227: 117718
doi: 10.1016/j.actamat.2022.117718
|
| [23] |
Chen Y Y, Shi G H, Du Z M, et al. Research progress on additive manufacturing TiAl alloy [J]. Acta Metall. Sin., 2024, 60: 1
doi: 10.11900/0412.1961.2022.00582
|
| [23] |
陈玉勇, 时国浩, 杜之明 等. 增材制造TiAl合金的研究进展 [J]. 金属学报, 2024, 60: 1
doi: 10.11900/0412.1961.2022.00582
|
| [24] |
Di S X, Ou B Y, Li W, et al. Research on high-temperature oxidation resistance behavior of TNM titanium aluminum alloy [J]. Chin. J. Eng., 2024, 46: 1826
|
| [24] |
邸士雄, 欧白羽, 李 维 等. TNM钛铝合金高温抗氧化行为研究 [J]. 工程科学学报, 2024, 46: 1826
|
| [25] |
Lang C, Schütze M. TEM investigations of the early stages of TiAl oxidation [J]. Oxid. Met., 1996, 46: 255
doi: 10.1007/BF01050799
|
| [26] |
Lang C, Schütze M. The initial stages in the oxidation of TiAl [J]. Mater. Corros., 1997, 48: 13
|
| [27] |
Xu C, Zhu M H, Guan H H, et al. Improvement of steam oxidation resistance of the γ-TiAl alloy with microarc oxidation coatings at 900-1200 oC [J]. Corros. Sci., 2022, 209: 110711
doi: 10.1016/j.corsci.2022.110711
|
| [28] |
Chu M S, Wu S K. The improvement of high temperature oxidation of Ti-50Al by sputtering Al film and subsequent interdiffusion treatment [J]. Acta Mater., 2003, 51: 3109
doi: 10.1016/S1359-6454(03)00123-X
|
| [29] |
Zhu D D, Wang X L, Zhao J, et al. Effect of water vapor on high-temperature oxidation of NiAl alloy [J]. Corros. Sci., 2020, 177: 108963
doi: 10.1016/j.corsci.2020.108963
|
| [30] |
Zhu D D, Wang X L, Jia P, et al. One-dimensional γ-Al2O3 growth from the oxidation of NiAl [J]. Corros. Sci., 2023, 216: 111069
doi: 10.1016/j.corsci.2023.111069
|
| [31] |
Swadźba R, Laska N, Bauer P P, et al. Effect of pre-oxidation on cyclic oxidation resistance of γ-TiAl at 900 oC [J]. Corros. Sci., 2020, 177: 108985
doi: 10.1016/j.corsci.2020.108985
|
| [32] |
Cheng Y F, Dettenwanger F, Mayer J, et al. Identification of a new phase formed during the oxidation of γ-tttanium aluminum [J]. Scr. Mater., 1996, 34: 707
doi: 10.1016/1359-6462(95)00552-8
|
| [33] |
Dettenwanger F, Schumann E, Ruhle M, et al. Microstructural study of oxidized γ-TiAl [J]. Oxid. Met., 1998, 50: 269
doi: 10.1023/A:1018892422121
|
| [34] |
Shemet V, Hoven H, Quadakkers W J. Oxygen uptake and depletion layer formation during oxidation of γ-TiAl based alloys [J]. Intermetallics, 1997, 5: 311
doi: 10.1016/S0966-9795(96)00093-3
|
| [35] |
Prescott R, Graham M J. The formation of aluminum oxide scales on high-temperature alloys [J]. Oxid. Met., 1992, 38: 233
doi: 10.1007/BF00666913
|
| [36] |
Shemet V, Karduck P, Hoven H, et al. Synthesis of the cubic Z-phase in the Ti-Al-O system by a powder metallurgical method [J]. Intermetallics, 1997, 5: 271
doi: 10.1016/S0966-9795(96)00091-X
|
| [37] |
Chepak-Gizbrekht M V, Knyazeva A G. Oxidation of TiAl alloy by oxygen grain boundary diffusion [J]. Intermetallics, 2023, 162: 107993
doi: 10.1016/j.intermet.2023.107993
|
| [38] |
Fisher J C. Calculation of diffusion penetration curves for surface and grain boundary diffusion [J]. J. Appl. Phys., 1951, 22: 74
doi: 10.1063/1.1699825
|
| [39] |
Ding R, Yao Y J, Sun B H, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels [J]. Sci. Adv., 2020, 6: eaay1430
doi: 10.1126/sciadv.aay1430
|
| [40] |
Copland E H, Gleeson B, Young D J. Formation of Z-Ti50Al30O20 in the sub-oxide zones of γ-TiAl-based alloys during oxidation at 1000 oC [J]. Acta Mater., 1999, 47: 2937
doi: 10.1016/S1359-6454(99)00169-X
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|