Please wait a minute...
中国腐蚀与防护学报  2026, Vol. 46 Issue (1): 71-80     CSTR: 32134.14.1005.4537.2025.133      DOI: 10.11902/1005.4537.2025.133
  增材制造与腐蚀专题 本期目录 | 过刊浏览 |
增材制造与铸造钛铝合金的微观组织及高温氧化行为对比研究
祝丁丁, 赵希雅, 张晓美, 梅子期, 逯文君, 王帅()
南方科技大学机械与能源工程系 深圳 518055
Comparative Characterization of Microstructure and High-temperature Oxidation Behavior of Additive Manufacturing and Casting TiAl Alloy
ZHU Dingding, ZHAO Xiya, ZHANG Xiaomei, MEI Ziqi, LU Wenjun, WANG Shuai()
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
引用本文:

祝丁丁, 赵希雅, 张晓美, 梅子期, 逯文君, 王帅. 增材制造与铸造钛铝合金的微观组织及高温氧化行为对比研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 71-80.
Dingding ZHU, Xiya ZHAO, Xiaomei ZHANG, Ziqi MEI, Wenjun LU, Shuai WANG. Comparative Characterization of Microstructure and High-temperature Oxidation Behavior of Additive Manufacturing and Casting TiAl Alloy[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 71-80.

全文: PDF(23327 KB)   HTML
摘要: 

对铸造与光-电复合增材制造Ti-43.5Al-4Nb-1Mo-0.1B (TNM)合金的微观组织及高温抗氧化性能进行研究。微观组织分析表明:铸造TNM合金主要由粗大α2-Ti3Al + γ-TiAl片层组织和少量β0-TiAl相构成,平均晶粒尺寸15.56 μm;而增材制造试样以网篮α2-Ti3Al+细小γ-TiAl和少量β0-TiAl为主,晶粒尺寸显著细化至2.45 μm。900 ℃氧化实验显示,增材制造试样TNM合金氧化速率大于铸造样品,且铸造样品在氧化24 h后在氧化层/基体界面会生成保护性Z相(Ti5Al3O2)。两种工艺制备的合金氧化行为差异主要归因于:增材制造试样细晶结构产生高密度晶界,加速基体内金属离子向外扩散和氧的向内扩散;相较于铸造样品,增材制造在氧化层/基体界面无法形成具有保护作用的Z相,加剧了合金的氧化速率。

关键词 增材制造TiAl合金高温氧化Z相    
Abstract

The microstructure and high-temperature oxidation resistance of two TiAl based Ti-43.5Al-4Nb-1Mo-0.1B alloys with addition of Nb and Mo (TNM) are comparatively assessed, which are prepared by casting and laser-electric hybrid additive-manufacturing (AM) respectively. Microstructural analysis indicates that: the cast TNM alloy is mainly composed of coarse lamellar α2-Ti3Al + γ-TiAl structureand a small amount of β0-TiAl phase, with an average grain size of 15.56 μm; while the AM alloy is mainly composed of basket-weave α2-Ti3Al + fine γ-TiAl and a small amount of β0-TiAl, and the grain size is significantly refined to 2.45 μm. The 900 °C oxidation test shows that the oxidation rate of the AM TNM alloy is higher than that of the cast ones, and a protective Z-phase (Ti5Al3O2) is formed at the oxide layer/matrix interface of the cast alloy after oxidation for 20 h. The difference in oxidation behavior between the two alloys may be mainly attributed to: the fine-grained structure of the AM alloy generates a high density of grain boundaries, accelerating the outward diffusion of metal ions in the matrix and the inward diffusion of oxygen; compared with the cast ones, the AM alloy cannot form a protective Z-phase at the oxide scale/matrix interface, which aggravates the oxidation rate of the alloy.

Key wordsadditive manufacturing    TiAl alloy    high-temperature oxidation    Z-phase
收稿日期: 2025-05-02      32134.14.1005.4537.2025.133
ZTFLH:  TG174  
基金资助:国家重点研发计划(2022YFB4600700);深圳市科技创新委员会项目(KJZD20240903101400001);深圳市发展和改革委员会项目(XMHT20240115003);中国博士后科学基金(2024M761298)
通讯作者: 王帅,E-mail:wangs@sustech.edu.cn,研究方向为特种金属的增材制造
作者简介: 祝丁丁,现任南方科技大学博士后(合作导师:王帅研究员),主要从事材料表面工程领域的学术研究。2023 年于湘潭大学获材料科学与工程博士学位。研究方向聚焦于耐高温材料(钛合金、镍基合金)表面改性技术、金属表面抗磨损耐腐蚀涂层制备技术开发,以及涂层、金属失效分析的原子级表征与机理研究。现主持中国博士后面上项目,作为骨干成员参与国家重点研发计划“增材制造与激光制造”青年科学家项目、国家自然科学基金面上项目等科研项目。在耐腐蚀涂层制备、失效分析等领域发表SCI学术论文28篇,其中第一作者8篇,成果见于Acta Materialia、Corrosion Science、Nano Research、Advanced Functional Materials等国际知名期刊。
王帅,现任南方科技大学长聘副教授(正高)、博士生导师,入选国家级高层次青年人才计划、深圳市“孔雀计划”B类人才。2010 年获于北海道大学博士学位。长期致力于“金属失效及其控制”研究,在氢脆理论、抗失效制造原理、光电复合增材技术等方面取得了系列成果,先后主持国自然青年/面上、国家重点研发计划青年科学家等竞争性科研项目。在相关领域以第一/通讯作者发表SCI/EI 论文41篇,其中有12篇发表在金属材料顶刊Acta Materialia。连续入选斯坦福大学全球前2%顶尖科学家榜单。担任《中国腐蚀与防护学报》、Corrosion Communications 等学术杂志青年编委。曾获中国腐蚀与防护学会科学技术奖二等奖、南科大“良师益友”奖、“优秀研究生导师”、青年教师教学竞赛一等奖、优秀教学奖等。
图1  光-电复合增材制备TNM TiAl合金示意图
MaterialsTiAlNbMoB
Powder48.8042.657.191.170.20
AM specimen50.3241.896.541.180.13
表1  增材制造前后试样化学成分对比 (atomic fraction / %)
图2  铸态和增材制造TNM样品的EBSD表征
图3  铸造和增材制造TNM合金的微观组织表征
图4  铸造和增材制造的TNM合金在900 ℃大气中氧化后的表面形貌SEM图(图中dA为氧化物平均晶粒尺寸)
图5  铸造和增材制造的TNM合金在900 ℃大气中氧化后横截面SEM以及TEM图
图6  增材制造和铸造TNM合金在900 ℃氧化后的横截面氧化层厚度以及氧化增重随时间变化氧化动力学曲线(误差棒表示基于多次测量的标准偏差不确定度,实线为抛物线方程拟合结果)
图7  铸造和增材制造TNM合金氧化24和48 h后氧化层/基体界面的SEM-BSE图像
AlloysTiAl
Cast TNM51.530.4
AM TNM25.218.5
表2  图7中铸造与增材制造TNM合金在900 ℃氧化24 h后局部区域(红点处)的化学成分 (atomic fraction / %)
[1] Yan H J, Yin R Z, Wang W J, et al. Cyclic oxidation behavior of TiAl alloy with electrodeposited SiO2 coating [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 81
[1] 严豪杰, 殷若展, 汪文君 等. TiAl合金表面电沉积SiO2涂层抗循环氧化性能研究 [J]. 中国腐蚀与防护学报, 2025, 45: 81
doi: 10.11902/1005.4537.2024.246
[2] Zhao Z Q, Yi M, Guo W L, et al. General-purpose neural network potential for Ti-Al-Nb alloys towards large-scale molecular dynamics with ab initio accuracy [J]. Phys. Rev. B, 2024, 110: 184115
doi: 10.1103/PhysRevB.110.184115
[3] Dimiduk D M. Gamma titanium aluminide alloys—An assessment within the competition of aerospace structural materials [J]. Mater. Sci. Eng., 1999, 263A: 281
[4] Duan B H, Yang Y C, He S Y, et al. History and development of γ-TiAl alloys and the effect of alloying elements on their phase tra-nsformations [J]. J. Alloy. Compd., 2022, 909: 164811
doi: 10.1016/j.jallcom.2022.164811
[5] Yamaguchi M. High temperature intermetallics-with particular emphasis on TiAl [J]. Mater. Sci. Technol., 1992, 8: 299
doi: 10.1179/mst.1992.8.4.299
[6] Wu X H. Review of alloy and process development of TiAl alloys [J]. Intermetallics, 2006, 14: 1114
doi: 10.1016/j.intermet.2005.10.019
[7] Perrut M, Caron P, Thomas M, et al. High temperature materials for aerospace applications: Ni-based superalloys and γ-TiAl alloys [J]. Comptes Rendus Phys., 2018, 19: 657
doi: 10.1016/j.crhy.2018.10.002
[8] Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
doi: 10.1016/j.actamat.2016.07.019
[9] Soliman H A, Elbestawi M. Titanium aluminides processing by additive manufacturing-a review [J]. Int. J. Adv. Manuf. Technol., 2022, 119: 5583
doi: 10.1007/s00170-022-08728-w
[10] Huang D N, Tan Q Y, Zhou Y H, et al. The significant impact of grain refiner on γ-TiAl intermetallic fabricated by laser-based additive manufacturing [J]. Addit. Manuf., 2021, 46: 102172
[11] Gao P, Wang Z M, Zeng X Y. Effect of process parameters on morphology, sectional characteristics and crack sensitivity of Ti-40Al-9V-0.5Y alloy single tracks produced by selective laser melting [J]. Int. J. Lightweight Mater. Manuf., 2019, 2: 355
[12] Löber L, Schimansky F P, Kühn U, et al. Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy [J]. J. Mater. Process. Technol., 2014, 214: 1852
doi: 10.1016/j.jmatprotec.2014.04.002
[13] Shi X Z, Ma S Y, Liu C M, et al. Parameter optimization for Ti-47Al-2Cr-2Nb in selective laser melting based on geometric characteristics of single scan tracks [J]. Opt. Laser Technol., 2017, 90: 71
doi: 10.1016/j.optlastec.2016.11.002
[14] Conrad H, Sprecher Jr A F, Cao W D, et al. Electroplasticity—the effect of electricity on the mechanical properties of metals [J]. JOM, 1990, 42: 28
[15] Li X, Zhu Q, Hong Y R, et al. Revealing the pulse-induced electroplasticity by decoupling electron wind force [J]. Nat. Commun., 2022, 13: 6503
doi: 10.1038/s41467-022-34333-2 pmid: 36316328
[16] Conrad H. Electroplasticity in metals and ceramics [J]. Mater. Sci. Eng., 2000, 287A: 276
[17] Li H, Jin F Z, Zhang M Y, et al. Decoupling electroplasticity by temporal coordination design of pulse current loading and straining [J]. Mater. Sci. Eng., 2023, 881A: 145435
[18] Zhuang Z T, Yan H J, Xie B, et al. High-temperature oxidation behavior of Ti45Al8.5Nb alloy via liquid-phase fluorination treatment [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 1517
[18] 庄钊涛, 严豪杰, 谢 冰 等. 液相氟化处理Ti45Al8.5Nb合金高温氧化行为研究 [J]. 中国腐蚀与防护学报, 2025, 45: 1517
doi: 10.11902/1005.4537.2025.040
[19] Wu L L, Yin R Z, Chen Z X, et al. Preparation and high temperature oxidation resistance of Zr-SiO2 composite coating on Ti45Al8.5-Nb alloy [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1423
[19] 吴亮亮, 殷若展, 陈朝旭 等. Ti45Al8.5Nb合金表面Zr-SiO2复合涂层的制备及其抗高温氧化性能研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1423
doi: 10.11902/1005.4537.2024.004
[20] Sun T L, Guo Z C, Cao J, et al. Isothermal oxidation behavior of high-Nb-containing TiAl alloys doped with W, B, Y, and C/Si [J]. Corros. Sci., 2023, 213: 110980
doi: 10.1016/j.corsci.2023.110980
[21] Yan H J, Xia J J, Wu L K, et al. Hot corrosion behavior of Ti45Al8.5-Nb alloy: Effect of anodization and pre-oxidation [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1531
doi: 10.1007/s40195-022-01380-z
[22] Zhang X Y, Li C W, Wu M H, et al. Atypical pathways for lamellar and twinning transformations in rapidly solidified TiAl alloy [J]. Acta Mater., 2022, 227: 117718
doi: 10.1016/j.actamat.2022.117718
[23] Chen Y Y, Shi G H, Du Z M, et al. Research progress on additive manufacturing TiAl alloy [J]. Acta Metall. Sin., 2024, 60: 1
doi: 10.11900/0412.1961.2022.00582
[23] 陈玉勇, 时国浩, 杜之明 等. 增材制造TiAl合金的研究进展 [J]. 金属学报, 2024, 60: 1
doi: 10.11900/0412.1961.2022.00582
[24] Di S X, Ou B Y, Li W, et al. Research on high-temperature oxidation resistance behavior of TNM titanium aluminum alloy [J]. Chin. J. Eng., 2024, 46: 1826
[24] 邸士雄, 欧白羽, 李 维 等. TNM钛铝合金高温抗氧化行为研究 [J]. 工程科学学报, 2024, 46: 1826
[25] Lang C, Schütze M. TEM investigations of the early stages of TiAl oxidation [J]. Oxid. Met., 1996, 46: 255
doi: 10.1007/BF01050799
[26] Lang C, Schütze M. The initial stages in the oxidation of TiAl [J]. Mater. Corros., 1997, 48: 13
[27] Xu C, Zhu M H, Guan H H, et al. Improvement of steam oxidation resistance of the γ-TiAl alloy with microarc oxidation coatings at 900-1200 oC [J]. Corros. Sci., 2022, 209: 110711
doi: 10.1016/j.corsci.2022.110711
[28] Chu M S, Wu S K. The improvement of high temperature oxidation of Ti-50Al by sputtering Al film and subsequent interdiffusion treatment [J]. Acta Mater., 2003, 51: 3109
doi: 10.1016/S1359-6454(03)00123-X
[29] Zhu D D, Wang X L, Zhao J, et al. Effect of water vapor on high-temperature oxidation of NiAl alloy [J]. Corros. Sci., 2020, 177: 108963
doi: 10.1016/j.corsci.2020.108963
[30] Zhu D D, Wang X L, Jia P, et al. One-dimensional γ-Al2O3 growth from the oxidation of NiAl [J]. Corros. Sci., 2023, 216: 111069
doi: 10.1016/j.corsci.2023.111069
[31] Swadźba R, Laska N, Bauer P P, et al. Effect of pre-oxidation on cyclic oxidation resistance of γ-TiAl at 900 oC [J]. Corros. Sci., 2020, 177: 108985
doi: 10.1016/j.corsci.2020.108985
[32] Cheng Y F, Dettenwanger F, Mayer J, et al. Identification of a new phase formed during the oxidation of γ-tttanium aluminum [J]. Scr. Mater., 1996, 34: 707
doi: 10.1016/1359-6462(95)00552-8
[33] Dettenwanger F, Schumann E, Ruhle M, et al. Microstructural study of oxidized γ-TiAl [J]. Oxid. Met., 1998, 50: 269
doi: 10.1023/A:1018892422121
[34] Shemet V, Hoven H, Quadakkers W J. Oxygen uptake and depletion layer formation during oxidation of γ-TiAl based alloys [J]. Intermetallics, 1997, 5: 311
doi: 10.1016/S0966-9795(96)00093-3
[35] Prescott R, Graham M J. The formation of aluminum oxide scales on high-temperature alloys [J]. Oxid. Met., 1992, 38: 233
doi: 10.1007/BF00666913
[36] Shemet V, Karduck P, Hoven H, et al. Synthesis of the cubic Z-phase in the Ti-Al-O system by a powder metallurgical method [J]. Intermetallics, 1997, 5: 271
doi: 10.1016/S0966-9795(96)00091-X
[37] Chepak-Gizbrekht M V, Knyazeva A G. Oxidation of TiAl alloy by oxygen grain boundary diffusion [J]. Intermetallics, 2023, 162: 107993
doi: 10.1016/j.intermet.2023.107993
[38] Fisher J C. Calculation of diffusion penetration curves for surface and grain boundary diffusion [J]. J. Appl. Phys., 1951, 22: 74
doi: 10.1063/1.1699825
[39] Ding R, Yao Y J, Sun B H, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels [J]. Sci. Adv., 2020, 6: eaay1430
doi: 10.1126/sciadv.aay1430
[40] Copland E H, Gleeson B, Young D J. Formation of Z-Ti50Al30O20 in the sub-oxide zones of γ-TiAl-based alloys during oxidation at 1000 oC [J]. Acta Mater., 1999, 47: 2937
doi: 10.1016/S1359-6454(99)00169-X
[1] 兰博韬, 吴斌, 明洪亮, 王俭秋, 韩恩厚. 选区激光熔化奥氏体不锈钢高温高压水中应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2026, 46(1): 1-14.
[2] 戴念维, 窦欣懿, 刘华剑, 冷滨. 增材制造合金在核能领域应用中的腐蚀研究进展[J]. 中国腐蚀与防护学报, 2026, 46(1): 15-24.
[3] 周丽, 曹晓蝶, 来佑彬, 丁旺旺, 韦博鑫, 吴嘉俊. 热处理工艺对增材制造金属零件腐蚀行为影响的研究进展[J]. 中国腐蚀与防护学报, 2026, 46(1): 37-48.
[4] 衣俊达, 冷傲, 宫得伦, 韦博鑫. 低模量耐腐蚀亚稳 β 钛合金的电子束增材制造与性能研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 49-59.
[5] 张俊男, 彭灿, 付琦, 张亮, 宋光铃. 海洋环境中铜绿假单胞菌对增材制造Al-Mg-Sc-Zr合金腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 60-70.
[6] 冯浩轩, 王馥丽, 李甲林, 杜瑶, 韦博鑫, 朱圣龙. SLM-316L不锈钢的高温氧化与腐蚀行为研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 137-144.
[7] 李柯萱, 王义朋, 廖伯凯. 电弧送丝增材、激光选区熔化增材和传统TC4钛合金钝化行为的对比研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 186-192.
[8] 庞曰艺, 张立波, 宁方强, 赵志坡, 闫宏, 刘佳. δ-铁素体对增材制造304L不锈钢液态铅铋腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2026, 46(1): 193-199.
[9] 庄钊涛, 严豪杰, 谢冰, 桂也, 孙擎擎, 伍廉奎, 曹发和. 液相氟化处理Ti45Al8.5Nb合金高温氧化行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1517-1527.
[10] 叶俊, 罗鑫, 镇咸生, 李新平, 谢云, 彭晓. Inconel 718合金在750 ℃下不同气氛中的氧化与热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1528-1536.
[11] 何武豪, 刘阳, 杨思懿, 张韶栋, 吴伟, 张俊喜. 敏化处理对传统和增材制造316L不锈钢电化学和晶间腐蚀的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1331-1340.
[12] 雷涛, 陈绍高, 刘秀利, 范金龙, 郑兴文. 乙二醇冷却液的劣化检测及增材制造AlSi10Mg铝合金在其中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(4): 1014-1024.
[13] 张晗, 刘轩溱, 黄爱辉, 赵晓峰, 陆杰. 热障涂层金属粘结层制备与研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 20-32.
[14] 严豪杰, 殷若展, 汪文君, 孙擎擎, 伍廉奎, 曹发和. TiAl合金表面电沉积SiO2 涂层抗循环氧化性能研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 81-91.
[15] 许习文, 舒小勇, 陈智群, 何海瑞, 董舒赫, 房雨晴, 彭晓. DD6单晶Ni基高温合金表面CVDAl涂层的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 148-154.