Please wait a minute...
中国腐蚀与防护学报  2026, Vol. 46 Issue (1): 193-199     CSTR: 32134.14.1005.4537.2025.300      DOI: 10.11902/1005.4537.2025.300
  增材制造与腐蚀专题 本期目录 | 过刊浏览 |
δ-铁素体对增材制造304L不锈钢液态铅铋腐蚀行为的影响
庞曰艺1, 张立波1, 宁方强1(), 赵志坡2(), 闫宏1, 刘佳1
1.山东科技大学材料科学与工程学院 山东省核电特种金属材料重点实验室 青岛 266590
2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Effect of δ-ferrite on Corrosion Behavior of Additively Manufactured 304L Stainless Steel in Liquid Lead-bismuth
PANG Yueyi1, ZHANG Libo1, NING Fangqiang1(), ZHAO Zhipo2(), YAN Hong1, LIU Jia1
1.Shandong Key Laboratory of Special Metallic Materials for Nuclear Equipment, School of Materials Science Engineering Shandong, University of Science and Technology, Qingdao 266590, China
2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

庞曰艺, 张立波, 宁方强, 赵志坡, 闫宏, 刘佳. δ-铁素体对增材制造304L不锈钢液态铅铋腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2026, 46(1): 193-199.
Yueyi PANG, Libo ZHANG, Fangqiang NING, Zhipo ZHAO, Hong YAN, Jia LIU. Effect of δ-ferrite on Corrosion Behavior of Additively Manufactured 304L Stainless Steel in Liquid Lead-bismuth[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 193-199.

全文: PDF(10824 KB)   HTML
摘要: 

铅冷快中子反应堆(LFRs)具有高安全性、高经济性、可传递放射性核素等优点,是最有应用前景的第四代堆型之一。液态铅铋共晶合金(LBE)是中子反应堆的首选冷却剂。然而,高温、高密度、高流速的液态铅铋共晶合金会对反应堆结构材料产生强烈的腐蚀,影响反应堆的运行安全。304L不锈钢是该反应堆的一种候选结构材料,而电弧增材制造则是改善该钢组织结构的新方法,故本文,研究并揭示了电弧增材制造的304L不锈钢中δ-铁素体对其在550 ℃、饱和氧/贫氧的液态铅铋共晶合金中的腐蚀行为的影响。结果表明,在饱和氧的液态铅铋共晶合金中,电弧增材制造的304L不锈钢表面形成3层氧化膜。其中,δ-铁素体展现出比奥氏体更强的抗氧化腐蚀能力,其会在相界处形成Fe-Cr尖晶石保护层,阻碍氧化腐蚀,因此在内氧化区呈现出钳子状形貌。在贫氧的液态铅铋共晶合金中,该钢主要发生溶解腐蚀。其中,由于O含量限制,δ-铁素体的表面虽然无法形成富Cr的保护膜,不能有效阻碍溶解腐蚀,但是δ-铁素体依然具有良好的耐溶解腐蚀性能,这主要归功于δ-铁素体具有较低的Ni含量,而溶解腐蚀主要受Ni的溶解控制。

关键词 增材制造304L不锈钢液态铅铋共晶合金δ-铁素体溶解氧浓度高温腐蚀    
Abstract

Lead-cooled fast reactors (LFRs) characterized by their high safety, high economic efficiency, and the ability to transmute radioactive nuclides, represent one of the most promising Generation IV reactor designs for practical implementation. Liquid lead-bismuth eutectic (LBE) is the preferred coolant for LFRs. However, LBE with high temperature, high density, and high flow rate will cause intensive corrosion towards the reactor structural materials, which poses a threat to the operational safety of reactors. 304L stainless steel is a candidate structural material for this reactor, and arc additive manufacturing is a novel way to alternate the microstructure of this steel. Therefore, this paper focuses in the influence of δ-ferrite generated in the wire arc additive manufactured (WAAM) 304L stainless steel on its corrosion behavior in saturated oxygen/poor oxygen liquid LBE at 550 oC. The results reveal that the corrosion resistance of δ-ferrite is superior to that of austenite. A spinel Fe-Cr protective oxide scale may form on the peripheries of δ-ferrites, which hinder the inward growth of the oxide scale. Consequently, a pincer-like morphology of oxide scale developed within the internal oxidation zone. In poor-oxygen LBE, WAAM 304L stainless steel mainly undergoes dissolution corrosion. Despite a Cr-rich protective scale cannot be formed on its surface due to oxygen content limitations, thereby failing to effectively inhibit dissolution corrosion, even so δ-ferrite still exhibits great resistance to dissolution corrosion. This is mainly attributed to the low Ni content in δ-ferrite, whereas dissolution corrosion is primarily controlled by the dissolution of Ni element.

Key wordsadditively manufactured 304L stainless steel    liquid lead-bismuth eutectic alloy    δ-ferrite    dissolved oxygen concentration    high-temperature corrosion
收稿日期: 2025-09-19      32134.14.1005.4537.2025.300
ZTFLH:  TL34  
基金资助:山东省青年科技人才托举工程(SDAST2025 QTA034)
通讯作者: 宁方强,E-mail:fqning16b@alum.imr.ac.cn,研究方向为核电结构材料腐蚀损伤行为与评价技术;
赵志坡,E-mail:zpzhao@imr.ac.cn,研究方向为特殊钢
作者简介: 庞曰艺,2002 年出生,2025 年毕业于山东科技大学,获学士学位。现就读于山东科技大学,在读硕士研究生。针对铅冷快堆候选结构材料腐蚀数据较为匮乏,且腐蚀机理仍然不清楚等问题,开展增材制造奥氏体不锈钢和铁素体/奥氏体双相不锈钢液态铅铋腐蚀行为研究,为结构材料腐蚀性能改善提供理论支撑。
宁方强,1993年出生,2021年毕业于中国科学技术大学,获博士学位。现就职于山东科技大学,副教授。主要研究方向为核电结构材料腐蚀损伤行为与评价技术研究。针对三代压水堆结构材料镍基合金及不锈钢,澄清了水化学参数对其腐蚀及局部腐蚀的影响规律;针对四代铅冷快堆候选结构材料,揭示了奥氏体不锈钢、铁/马钢等候选材料的液态铅铋腐蚀机理,澄清了材料成分及环境等因素的影响规律。先后主持国家、山东省自然科学基金青年科学基金(C类)、山东省青年科技人才托举工程、企业委托横向课题7项等。担任Corrosion Communications、《中国腐蚀与防护学报》、《腐蚀与防护》等期刊的青年编委。以第一/通讯作者在CS、JMST、JNM等期刊发表论文20余篇。
赵志坡,1992年出生,2020年毕业于中国科学技术大学,获博士学位。现就职于中国科学院金属研究所,助理研究员。主要研究方向为特殊钢组织结构调控及表面防护涂层。针对特殊钢中第二相及析出相导致的疲劳开裂和点蚀问题,提出“限域重熔-形变耦合处理”工艺,解决了特殊钢中相结构和成分不均匀的问题,显著提升钢的服役寿命。先后主持国家自然科学基金青年科学基金(C类)、中科院先导专项课题、中国博士后科学基金、辽宁省应用基础研究计划项目等。以第一/通讯作者在MSEA、Materials & Design 等期刊发表论文10篇,申请发明专利6项(授权2项),作大会/特邀报告2次。
图1  WAAM 304L不锈钢样品示意图
图2  WAAM 304L不锈钢的BOT面的微观结构
图3  WAAM 304L不锈钢的原始样品和在550 ℃、饱和氧/贫氧的液态LBE中浸泡1000 h后的样品的XRD图谱
图4  WAAM 304L不锈钢在550 ℃、饱和氧的液态LBE中浸泡1000 h后的氧化膜截面SEM形貌和EDS结果
图5  WAAM 304L不锈钢在550 ℃、饱和氧的液态LBE中浸泡1000 h下δ-铁素体SEM形貌和EDS结果
图6  WAAM 304L不锈钢在550 ℃、贫氧的液态LBE中浸泡1000 h下样品腐蚀截面的SEM形貌和EDS面扫描结果
图7  WAAM 304L不锈钢在550 ℃、贫氧的液态LBE中浸泡1000 h下δ-铁素体的SEM形貌图
图8  WAAM 304L不锈钢在550 ℃、饱和氧的液态LBE中δ-铁素体的腐蚀机理示意图
[1] Zhang J S. A review of steel corrosion by liquid lead and lead-bismuth [J]. Corros. Sci., 2009, 51: 1207
doi: 10.1016/j.corsci.2009.03.013
[2] Xu G F, Li Y, Lei Y C, et al. Effect of relative flow velocity on corrosion behavior of high nitrogen austenitic stainless steel in liquid lead-bismuth eutectic alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 899
[2] 徐桂芳, 李 园, 雷玉成 等. 相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 899
doi: 10.11902/1005.4537.2020.161
[3] Pan Z Y, Liu J, Jiang Z Z, et al. Corrosion behavior of Fe34Cr30Mo15Ni15Nb3Al3 high-entropy alloy in molten Pb-Bi eutectic containing 10-6 % oxygen at 500 oC [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1353
[3] 潘宗宇, 刘 静, 姜志忠 等. Fe34Cr30Mo15Ni15Nb3Al3高熵合金在500 ℃下氧含量为10-6 %的液态铅铋合金中腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1353
doi: 10.11902/1005.4537.2023.331
[4] Martı́n F J, Soler L, Hernández F, et al. Oxide layer stability in lead-bismuth at high temperature [J]. J. Nucl. Mater., 2004, 335: 194
doi: 10.1016/j.jnucmat.2004.07.017
[5] Chen G, Wang J, Zhang H T, et al. Low-temperature oxy-nitriding of 316L austenitic stainless steel for improved corrosion resistance in liquid lead-bismuth eutectic [J]. Scr. Mater., 2021, 202: 114014
doi: 10.1016/j.scriptamat.2021.114014
[6] Gorynin I V, Karzov G P, Markov V G, et al. Structural materials for atomic reactors with liquid metal heat-transfer agents in the form of lead or lead-Bismuth alloy [J]. Met. Sci. Heat Treat., 1999, 41: 384
doi: 10.1007/BF02469876
[7] Schroer C, Voß Z, Wedemeyer O, et al. Oxidation of steel T91 in flowing lead-bismuth eutectic (LBE) at 550 oC [J]. J. Nucl. Mater., 2006, 356: 189
doi: 10.1016/j.jnucmat.2006.05.009
[8] Shan H M, Zhang T, Yuan Y K, et al. Effects of dissolved oxygen on the corrosion-related unidentified deposit formed of 304SS in the flow accelerated zone under the simulated secondary water chemistry [J]. Corros. Commun., 2024, 16: 14
[9] Liu S X, Wang L L, Lyu F Y, et al. Precipitated phase distribution and strengthening mechanism of 2319 aluminum alloy deposited by wire arc additive manufacturing [J]. J. Mater. Eng., 2025, 53(9): 82
doi: 10.11868/j.issn.1001-4381.2023.000365
[9] 刘圣心, 王磊磊, 吕飞阅 等. 电弧增材制造2319铝合金析出相分布及强化机理 [J]. 材料工程, 2025, 53(9): 82
doi: 10.11868/j.issn.1001-4381.2023.000365
[10] Xu K K, Gong Y D, Zhao Q. Comparison of traditional processing and additive manufacturing technologies in various performance aspects: A review [J]. Arch. Civ. Mech. Eng., 2023, 23: 188
doi: 10.1007/s43452-023-00699-3
[11] Zhao H Y, Gao D L, Zhang T, et al. Microstructure and corrosion evolution of aerospace AA2024 Al-Alloy thin wall structure produced through WAAM [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 621
[11] 赵海洋, 高多龙, 张 童 等. 电弧增材制造航空AA2024铝合金的微观结构及其腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 621
doi: 10.11902/1005.4537.2021.149
[12] Zhang L B, Wang H, Zhao K, et al. Corrosion behavior of 304L stainless steel by wire arc additive manufacturing in liquid lead-bismuth eutectic at 550 oC [J]. J. Nucl. Mater., 2025, 605: 155598
doi: 10.1016/j.jnucmat.2024.155598
[13] Wang Y Q. Research on the effects of δ-ferrite on properties of nuclear-grade austenitic stainless steels [D]. Hefei: University of Science and Technology of China, 2022
[13] 王琪玉. 核级奥氏体不锈钢中δ-铁素体对相关性能影响的研究 [D]. 合肥: 中国科学技术大学, 2022
[14] Chen S H, Wang Q Y, Xie A, et al. Corrosion behavior of δ-ferrite in AISI 316 austenitic stainless steel exposed to oxygen-saturated lead-bismuth eutectic at 550 oC [J]. Mater. Charact., 2024, 211: 113930
doi: 10.1016/j.matchar.2024.113930
[15] Wu B J, Zhu M D, Wang L B, et al. Study on microstructure and mechanical properties of 304LN fabricated by electric arc additive manufacturing [J]. Weld. J., 2024, 53: 1
[15] 吴冰洁, 朱明冬, 王留冰 等. 电弧增材制造的304LN微观组织与力学性能研究 [J]. 焊接技术, 2024, 53: 1
[16] Charalampopoulou E, Delville R, Verwerft M, et al. Transmission electron microscopy study of complex oxide scales on DIN 1. 4970 steel exposed to liquid Pb-Bi eutectic [J]. Corros. Sci., 2019, 147: 22
doi: 10.1016/j.corsci.2018.10.018
[17] Hosemann P, Dickerson R, Dickerson P, et al. Transmission electron microscopy (TEM) on oxide layers formed on D9 stainless steel in lead bismuth eutectic (LBE) [J]. Corros. Sci., 2013, 66: 196
doi: 10.1016/j.corsci.2012.09.019
[18] Sun W J, Tang Z H, Wang J, et al. Corrosion behavior of a Cr-Al coating deposited on 304 austenitic stainless steel by multi-arc ion plating in liquid lead-bismuth eutectic [J]. Coatings, 2022, 12: 667
doi: 10.3390/coatings12050667
[19] Kurata Y, Futakawa M, Saito S. Comparison of the corrosion behavior of austenitic and ferritic/martensitic steels exposed to static liquid Pb-Bi at 450 and 550 oC [J]. J. Nucl. Mater., 2005, 343: 333
doi: 10.1016/j.jnucmat.2004.07.064
[20] Yamaki E, Ginestar K, Martinelli L. Dissolution mechanism of 316L in lead-bismuth eutectic at 500 oC [J]. Corros. Sci., 2011, 53: 3075
doi: 10.1016/j.corsci.2011.05.031
[21] Schroer C, Wedemeyer O, Novotny J, et al. Selective leaching of nickel and chromium from type 316 austenitic steel in oxygen-containing lead bismuth eutectic (LBE) [J]. Corros. Sci., 2014, 84: 113
doi: 10.1016/j.corsci.2014.03.016
[1] 李琰琰, 李帅, 董超, 李冬强, 鲍泽斌, 朱圣龙. 大气等离子热障涂层体系在900 ℃含水蒸气和NaCl环境下的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(5): 1233-1243.
[2] 沈晨, 黄锦阳, 张醒兴, 胡新元, 朱明, 鲁金涛. 金属材料的高温碳化腐蚀与防护研究现状[J]. 中国腐蚀与防护学报, 2025, 45(3): 589-601.
[3] 占阜元, 刘宣义, 黄世福, 刘帅岐, 徐媛媛, 潘喜桂, 何华林, 刘光明. SA210C钢在涂覆不同质量比混合盐膜下的高温腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(6): 1656-1662.
[4] 李建呈, 赵京, 谢新, 王金龙, 陈明辉, 王福会. 钛合金表面磷酸盐涂层的制备及在高温盐-水蒸气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 159-166.
[5] 曲卫卫, 陈泽浩, 裴延玲, 李树索, 王福会. CMAS熔体在不同热障涂层用材料表面的铺展和腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[6] 郭涛, 黄峰, 胡骞, 刘静. 9Ni钢铸坯在900~1250 ℃空气中的高温氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(4): 882-889.
[7] 柳志浩, 刘光明, 何思凡, 董猛, 李玉, 李富天, 祝婷. F22母材与焊缝在模拟沿海空气中的高温腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 594-600.
[8] 王碧辉, 肖博, 潘佩媛, 刘聚, 张乃强. 固体氧化物燃料电池金属连接体腐蚀研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 6-12.
[9] 官宇, 刘光明, 张民强, 刘欢欢, 柳志浩, 龚兵兵. Sanicro 25钢在高硫煤灰/模拟烟气中的高温腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 681-686.
[10] 陈土春, 向军淮, 江龙发, 熊剑, 白凌云, 徐勋虎, 徐鑫成. Q235钢在氧化性含Cl气氛中的高温腐蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(4): 560-564.
[11] 谢冬柏, 洪昊, 王文, 彭晓, 多树旺. 模拟燃烧环境介质和温度对不锈钢表面氧化物形态的影响研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[12] 梁书源, 姜翠玉. 电厂燃油锅炉腐蚀机理及防腐添加剂研究进展[J]. 中国腐蚀与防护学报, 2018, 38(2): 105-116.
[13] 马双忱, 焦坤灵, 张立男, 孙尧, 吴文龙, 张小霓. 高温气相条件下硫酸氢铵与硫酸铵对20#碳钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 605-612.
[14] 张明明,辛丽,丁学勇,耿树江,朱圣龙,王福会. 600 ℃/NaCl-H2O-O2协同环境中Ti/TiAlN多层涂层的耐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 29-35.
[15] 李琰,鲁金涛,杨珍,朱明,谷月峰. 烟气S含量对700 ℃超超临界锅炉候选合金腐蚀行为影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 505-512.